1.
Feurle, GE, Hamscher, G, Kusiek, R, Meyer, HE, Metzger, JW. Identification of xenin, a xenopsin-related peptide, in the human gastric mucosa and its effect on exocrine pancreatic secretion. J Biol Chem. 1992;267:22305-22309.
Google Scholar |
Crossref |
Medline2.
Kageyama, T, Ichinose, M, Yonezawa, S. Processing of the precursors to neurotensin and other bioactive peptides by cathepsin E. J Biol Chem. 1995;270:19135-19140.
Google Scholar |
Crossref |
Medline3.
Hamscher, G, Meyer, HE, Feurle, GE. Identification of proxenin as a precursor of the peptide xenin with sequence homology to yeast and mammalian coat protein α. Peptides. 1996;17:889-893.
Google Scholar |
Medline4.
Feurle, GE. Xenin – a review. Peptides. 1998;19:609-615.
Google Scholar |
Crossref |
Medline5.
Chow, VT, Quek, HH. Alpha coat protein COPA (HEP-COP): presence of an Alu repeat in cDNA and identity of the amino terminus to xenin. Ann Hum Genet. 1997;61:369-373.
Google Scholar |
Crossref |
Medline6.
Craig, SL, Gault, VA, Irwin, N. Emerging therapeutic potential for xenin and related peptides in obesity and diabetes. Diabetes Metab Res Rev. 2018;34:e3006.
Google Scholar |
Crossref |
Medline7.
Araki, K, Tachibana, S, Uchiyama, M, Nakajima, T, Yasuhara, T. Isolation and structure of a new active peptide xenopsin on rat stomach strip and some biogenic amines in the skin of Xenopus laevis. Chem Pharm Bull. 1975;23:3132-3140.
Google Scholar |
Crossref |
Medline8.
Hamscher, G, Meyer, HE, Metzger, JW, Feurle, GE. Distribution, formation, and molecular forms of the peptide xenin in various mammals. Peptides. 1995;16:791-797.
Google Scholar |
Crossref |
Medline9.
Anlauf, M, Weihe, E, Hartschuh, W, Hamscher, G, Feurle, GE. Localization of xenin-immunoreactive cells in the duodenal mucosa of humans and various mammals. J Histochem Cytochem. 2000;48:1617-1626.
Google Scholar |
SAGE Journals10.
Khan, D, Vasu, S, Moffett, RC, Gault, VA, Flatt, PR, Irwin, N. Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biol Chem. 2017;399:79-92.
Google Scholar |
Crossref |
Medline11.
Cline, MA, Nandar, W, Rogers, JO. Xenin reduces feed intake by activating the ventromedial hypothalamus and influences gastrointestinal transit rate in chicks. Behav Brain Res. 2007;179:28-32.
Google Scholar |
Crossref |
Medline12.
Kim, ER, Mizuno, TM. Xenin delays gastric emptying rate and activates the brainstem in mice. Neurosci Lett. 2010;481:59-63.
Google Scholar |
Crossref |
Medline13.
Chowdhury, S, Reeds, DN, Crimmins, DL, et al. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol. 2014;306:G301-G309.
Google Scholar |
Crossref |
Medline14.
Alexiou, C, Zimmermann, JP, Schick, RR, Schusdziarra, V. Xenin-a novel suppressor of food intake in rats. Brain Res. 1998;800:294-299.
Google Scholar |
Crossref |
Medline15.
Leckstrom, A, Kim, ER, Wong, D, Mizuno, TM. Xenin, a gastrointestinal peptide, regulates feeding independent of the melanocortin signaling pathway. Diabetes. 2009;58:87-94.
Google Scholar |
Crossref |
Medline16.
Martin, CM, Parthsarathy, V, Hasib, A, et al. Biological activity and antidiabetic potential of C-terminal octapeptide fragments of the gut-derived hormone xenin. PLoS One. 2016;11:e0152818.
Google Scholar |
Crossref |
Medline17.
Silvestre, RA, Rodrı́guez-Gallardo, J, Egido, EM, Hernández, R, Marco, J. Stimulatory effect of xenin-8 on insulin and glucagon secretion in the perfused rat pancreas. Regul Pept. 2003;115:25-29.
Google Scholar |
Crossref |
Medline18.
Taylor, AI, Irwin, N, McKillop, AM, Patterson, S, Flatt, PR, Gault, VA. Evaluation of the degradation and metabolic effects of the gut peptide xenin on insulin secretion, glycaemic control and satiety. J Endocrinol. 2010;207:87-93.
Google Scholar |
Crossref |
Medline19.
Martin, CM, Gault, VA, McClean, S, Flatt, PR, Irwin, N. Degradation, insulin secretion, glucose-lowering and GIP additive actions of a palmitate-derivatised analogue of xenin-25. Biochem Pharmacol. 2012;84:312-319.
Google Scholar |
Crossref |
Medline20.
Martin, CM, Parthsarathy, V, Pathak, V, Gault, VA, Flatt, PR, Irwin, N. Characterisation of the biological activity of xenin-25 degradation fragment peptides. J Endocrinol. 2014;221:193-200.
Google Scholar |
Crossref |
Medline21.
Gault, VA, Martin, CMA, Flatt, PR, Parthsarathy, V, Irwin, N. Xenin-25[Lys(13)PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetol. 2015;52:461-471.
Google Scholar |
Crossref |
Medline22.
Parthsarathy, V, Irwin, N, Hasib, A, et al. A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochim Biophys Acta. 2016;1860:757-764.
Google Scholar |
Crossref |
Medline23.
Gobron, B, Bouvard, B, Vyavahare, S, et al. Enteroendocrine K cells exert complementary effects to control bone quality and mass in mice. J Bone Miner Res. 2020;35:1363-1374.
Google Scholar |
Crossref |
Medline24.
Wice, BM, Reeds, DN, Tran, HD, et al. Xenin-25 amplifies GIP-mediated insulin secretion in humans with normal and impaired glucose tolerance but not type 2 diabetes. Diabetes. 2012;61:1793-1800.
Google Scholar |
Crossref |
Medline25.
Wice, BM, Wang, S, Crimmins, DL, et al. Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem. 2010;285:19842-19853.
Google Scholar |
Crossref |
Medline26.
Craig, SL, Gault, VA, McClean, S, Hamscher, G, Irwin, N. Effects of an enzymatically stable C-terminal hexapseudopeptide fragment peptide of xenin-25, ψ-xenin-6, on pancreatic islet function and metabolism. Mol Cell Endocrinol. 2019;496:110523.
Google Scholar |
Crossref |
Medline27.
Clemens, A, Katsoulis, S, Nustede, R, et al. Relaxant effect of xenin on rat ileum is mediated by apaminsensitive neurotensin-type receptors. Am J Physiol. 1997;272:G190-G196.
Google Scholar |
Medline28.
Heuser, M, Kleiman, I, Pöpken, O, Nustede, R, Post, S. Evidence for non-neurotensin receptor-mediated effects of xenin (1-25)—focus on intestinal microcirculation. Regul Pept. 2002;107:23-27.
Google Scholar |
Crossref |
Medline29.
Tanday, N, Moffett, RC, Gault, VA, Flatt, PR, Irwin, N. Enzymatically stable analogue of the gut-derived peptide xenin on beta-cell transdifferentiation in high fat fed and insulin-deficient Ins1Cre/+ ;Rosa26-eYFP mice. Diabetes Metab Res Rev. 2021;37:e3384.
Google Scholar |
Crossref |
Medline30.
Feurle, GE, Klein, A, Hamscher, G, Metzger, JW, Schuurkes, JA. Neurokinetic and myokinetic effects of the peptide xenin on the motility of the small and large intestine of Guinea pig. J Pharmacol Exp Ther. 1996;278:654-661.
Google Scholar |
Medline31.
Cooke, JH, Patterson, M, Patel, SR, et al. Peripheral and central administration of xenin and neurotensin suppress food intake in rodents. Obesity. 2009;17:1135-1143.
Google Scholar |
Crossref |
Medline32.
Bhavya, S, Lew, PS, Mizuno, TM. Central action of xenin affects the expression of lipid metabolism-related genes and proteins in mouse white adipose tissue. Neuropeptides. 2017;63:67-73.
Google Scholar |
Crossref |
Medline33.
English, A, Craig, SL, Flatt, PR, Irwin, N. Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes. Biol Chem. 2020;401:1293-1303.
Google Scholar |
Crossref |
Medline34.
Knop, FK, Vilsbøll, T, Højberg, PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007;56:1951-1959.
Google Scholar |
Crossref |
Medline |
ISI35.
Nauck, MA, Meier, JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20 Suppl 1:5-21.
Google Scholar |
Crossref36.
Willard, FS, Douros, JD, Gabe, MB, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020;5:e140532.
Google Scholar |
Crossref |
Medline37.
Mazella, J, Béraud-Dufour, S, Devader, C, Massa, F, Coppola, T. Neurotensin and its receptors in the control of glucose homeostasis. Front Endocrinol. 2012;3:143.
Google Scholar |
Crossref |
Medline38.
Kim, ER, Lew, PS, Spirkina, A, Mizuno, TM. Xenin-induced feeding suppression is not mediated through the activation of central extracellular signal-regulated kinase signaling in mice. Behav Brain Res. 2016;312:118-126.
Google Scholar |
Crossref |
Medline39.
Kerbel, B, Badal, K, Sundarrajan, L, Blanco, A, Unniappan, S. Xenin is a novel anorexigen in goldfish (Carassius auratus). PLoS One. 2018;13:e0197817.
Google Scholar |
Crossref |
Medline40.
Trümper, A, Trümper, K, Hörsch, D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J Endocrinol. 2002;174:233-246.
Google Scholar |
Crossref |
Medline |
ISI41.
Trümper, A, Trümper, K, Trusheim, H, Arnold, R, Göke, B, Hörsch, D. Glucose-dependent Insulinotropic polypeptide is a growth factor for β (INS-1) cells by Pleiotropic signaling. Mol Endocrinol. 2001;15:1559-1570.
Google Scholar |
Medline42.
Harada, N, Inagaki, N. Role of GIP receptor signaling in β-cell survival. Diabetol Int. 2017;8:137-138.
Google Scholar |
Crossref |
Medline43.
Sarnobat, D, Moffett, RC, Gault, VA, et al. Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic GluCreERT2;ROSA26-eYFP mice. Peptides. 2020;125:170205.
Google Scholar |
Crossref |
Medline44.
Rojas, J, Chávez, M, Olivar, L, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med. 2014;2014:719050.
Google Scholar |
Crossref |
Medline45.
Temur, M, Özün Özbay, P, Aksun, S, et al. Elevated circulating levels of xenopsin-related peptide-1 are associated with polycystic ovary syndrome. Arch Gynecol Obstet. 2017;296:841-846.
Google Scholar |
Crossref |
Medline46.
Guclu, YA, Sahin, E, Aksit, M. The relationship between elevated serum xenin and insulin resistance in women with polycystic ovary syndrome: a case-control study. Gynecol Endocrinol. 2019;35:960-964.
Google Scholar |
Crossref |
Medline47.
Marqus, S, Pirogova, E, Piva, TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017;24:21.
Google Scholar |
Crossref |
Medline48.
Fosgerau, K, Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122-128.
Google Scholar |
Crossref |
Medline |
ISI49.
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17:134-143.
Google Scholar |
Crossref |
Medline50.
Feurle, GE, Meyer, HE, Hamscher, G. Metabolism and potency of xenin and of its reduced hexapseudopeptide psi fragment in the dog. Life Sci. 2003;74:697-707.
留言 (0)