1.
Kerner, W, Brückel, J. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122:384-386.
Google Scholar |
Crossref |
Medline |
ISI2.
Khan, MAB, Hashim, MJ, King, JK, Govender, RD, Mustafa, H, Al Kaabi, J. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10:107-111.
Google Scholar |
Crossref |
Medline3.
Cho, NH, Shaw, JE, Karuranga, S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281.
Google Scholar |
Crossref |
Medline4.
Setacci, C, De Donato, G, Setacci, F, Chisci, E. Diabetic patients: epidemiology and global impact. J Cardiovasc Surg. 2009;50:263-273.
Google Scholar |
Medline |
ISI5.
Ling, W, Huang, Y, Huang, YM, Fan, RR, Sui, Y, Zhao, HL. Global trend of diabetes mortality attributed to vascular complications, 2000-2016. Cardiovasc Diabetol. 2020;19:182.
Google Scholar |
Crossref |
Medline6.
Khan, R. Postprandial blood glucose. Diabetes Care. 2001;24:775-778.
Google Scholar |
Crossref |
Medline7.
Bastyr, EJ, Stuart, CA, Brodows, RG, et al. Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. IOEZ Study Group. Diabetes Care. 2000;23:1236-1241.
Google Scholar |
Crossref |
Medline |
ISI8.
Meyer, C, Pimenta, W, Woerle, HJ, et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 2006;29:1909-1914.
Google Scholar |
Crossref |
Medline9.
Takata, K. Glucose transporters in the transepithelial transport of glucose. J Electron Microsc (Tokyo). 1996;45:275-284.
Google Scholar |
Crossref |
Medline10.
Anonymous . Alpha glucosidase inhibitors. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, National Institute of Diabetes and Digestive and Kidney Diseases; 2012.
Google Scholar11.
Zhang, BW, Li, X, Sun, WL, et al. Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose. J Agric Food Chem. 2017;65:8319-8330.
Google Scholar |
Crossref |
Medline12.
Menezes, JCJMDS, Diederich, MF. Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. Eur J Med Chem. 2019;182:111637.
Google Scholar |
Crossref |
Medline13.
Taha, M, Shah, SAA, Afifi, M, et al. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg Chem. 2018;77:586-592.
Google Scholar |
Crossref |
Medline14.
Asgari, MS, Mohammadi-Khanaposhtani, M, Kiani, M, et al. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg Chem. 2019;92:103206.
Google Scholar |
Crossref |
Medline15.
Channa Basappa, V, Hamse Kameshwar, V, Kumara, K, Achutha, DK, Neratur Krishnappagowda, L, Kariyappa, AK. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon. 2020;6:e05290.
Google Scholar |
Crossref |
Medline16.
Olefsky, JM, Nolan, JJ. Insulin resistance and non-insulin-dependent diabetes mellitus: cellular and molecular mechanisms. Am J Clin Nutr. 1995;61:980S-986S.
Google Scholar |
Crossref |
Medline17.
Chang, W-C, Wu, SC, Xu, KD, Liao, B-C, Wu, JF, Cheng, A-S. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules. 2015;20:2786-2801.
Google Scholar |
Crossref |
Medline18.
Holst, JJ. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology. 1994;107:1848-1855.
Google Scholar |
Crossref |
Medline |
ISI19.
Sulis, PM, Dambrós, BF, Mascarello, A, et al. Sulfonyl(thio)urea derivative induction of insulin secretion is mediated by potassium, calcium, and sodium channel signal transduction. J Cell Physiol. 2019;234:10138-10147.
Google Scholar |
Crossref |
Medline20.
Holst, JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409-1439.
Google Scholar |
Crossref |
Medline |
ISI21.
Drucker, DJ. Mechanisms of action and therapeutic application of Glucagon-like peptide-1. Cell Metab. 2018;27:740-756.
Google Scholar |
Crossref |
Medline22.
Nauck, MA, Niedereichholz, U, Ettler, R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol Metab. 1997;273:E981-E988.
Google Scholar |
Medline23.
Posner, BI. Insulin signalling: the inside story. Can J Diabetes. 2017;41:108-113.
Google Scholar |
Crossref |
Medline24.
Begum, N, Leitner, W, Reusch, JE, Sussman, KE, Draznin, B. GLUT-4 phosphorylation and its intrinsic activity. Mechanism of Ca(2+)-induced inhibition of insulin-stimulated glucose transport. J Biol Chem. 1993;268:3352-3356.
Google Scholar |
Crossref |
Medline25.
Wautier, JL, Zoukourian, C, Chappey, O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Investig. 1996;97:238-243.
Google Scholar |
Crossref |
Medline |
ISI26.
Heidari, F, Rabizadeh, S, Rajab, A, et al. Advanced glycation end-products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes. Life Sci. 2020;260:118422.
Google Scholar |
Crossref |
Medline27.
Bajaj, S, Khan, A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012;16:S267-S271.
Google Scholar28.
Chitra, PS, Chaki, D, Boiroju, NK, et al. Status of oxidative stress markers, advanced glycation index, and polyol pathway in age-related cataract subjects with and without diabetes. Exp Eye Res. 2020;200:108230.
Google Scholar |
Crossref |
Medline29.
Turkmen, K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. Int Urol Nephrol. 2017;49:837-844.
Google Scholar |
Crossref |
Medline30.
Dehdashtian, E, Mehrzadi, S, Yousefi, B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 2018;193:20-33.
Google Scholar |
Crossref |
Medline31.
Ikeda, T, Iwata, K, Murakami, H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000;59:887-890.
Google Scholar |
Crossref |
Medline32.
Khan, A, Pessin, J. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia. 2002;45:1475-1483.
Google Scholar |
Crossref |
Medline |
ISI33.
Krook, A, Wallberg-Henriksson, H, Zierath, JR. Sending the signal: molecular mechanisms regulating glucose uptake. Med Sci Sports Exerc. 2004;36:1212-1217.
Google Scholar |
Crossref |
Medline34.
Cernea, S, Raz, I. Insulin therapy: future perspectives. Am J Ther. 2020;27:e121-e132.
Google Scholar |
Crossref |
Medline35.
Gudat, U, Bungert, S, Kemmer, F, Heinemann, L. The blood glucose lowering effects of exercise and glibenclamide in patients with type 2 diabetes mellitus. Diabet Med. 1998;15:194-198.
Google Scholar |
Crossref |
Medline36.
Li, CL, Pan, CY, Lu, JM, et al. Effect of metformin on patients with impaired glucose tolerance. Diabet Med. 1999;16:477-481.
Google Scholar |
Crossref |
Medline37.
Tahrani, AA, Barnett, AH, Bailey, CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1:140-151.
Google Scholar |
Crossref |
Medline |
ISI38.
Yang, P, Feng, J, Peng, Q, Liu, X, Fan, Z. Advanced glycation end products: potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxid Med Cell Longev. 2019;2019:9570616.
Google Scholar |
Crossref |
Medline39.
Sarker, SD, Nahar, L. Progress in the chemistry of naturally occurring coumarins. In: Kinghorn, A, Falk, H, Gibbons, S, Kobayashi, J eds. Progress in the Chemistry of Organic Natural Products. Vol. 106. Springer; 2017;241-304.
Google Scholar40.
Alshibl, HM, Al-Abdullah, ES, Haiba, ME, et al. Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules. 2020;25:i: E3251.
Google Scholar |
Crossref |
Medline41.
Liang, H, Shi, Y, Zeng, K, Zhao, M, Tu, P, Jiang, Y. Coumarin derivatives from the leaves and twigs of Murraya exotica L. and their anti-inflammatory activities. Phytochemistry. 2020;177:112416.
Google Scholar |
Crossref |
Medline42.
Lee, SO, Choi, SZ, Lee, JH, et al. Antidiabetic coumarin and cyclitol compounds fromPeucedanum japonicum. Arch Pharm Res. 2004;27:1207-1210.
Google Scholar |
Crossref |
Medline43.
Singh, AK, Patel, PK, Choudhary, K, Joshi, J, Yadav, D, Jin, JO. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: in silico, in vitro, ex vivo. Biomolecules. 2020;10:207.
Google Scholar |
Crossref44.
Wu, L, Wang, X, Xu, W, Farzaneh, F, Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem. 2009;16:4236-4260.
Google Scholar |
Crossref |
Medline45.
Matos, MJ, Santana, L, Uriarte, E, Abreu, OA, Molina, E, Yordi, EG. coumarins—an important class of phytochemicals. In: Venket Rao, A, Rao, LG, eds. Phytochemicals - Isolation, Characterisation and Role in Human Health. InTech; 2015.
Google Scholar |
Crossref46.
Annunziata, F, Pinna, C, Dallavalle, S, Tamborini, L, Pinto, A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int J Mol Sci. 2020;21:1-83.
Google Scholar |
Crossref47.
PubChem . National Libary of Medicine, National Center for Biotechnology Information, Accessed June 17, 2021
https://pubchem.ncbi.nlm.nih.gov/#query=coumarin Google Scholar48.
Venugopala, KN, Rashmi, V, Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. 2013;2013:963248.
Google Scholar |
Crossref |
Medline49.
Rohini, K, Ps, SRIKUMAR. Therapeutic role of coumarins and coumarin-related compounds. J Thermodyn Catal. 2014;05:1-3.
Google Scholar50.
Bipat, R. From rat poison to medicine: medical applications of coumarin derivatives. In: Rao, V, Mans, DRA, Rao, L eds. Phytochemicals in Human Health. IntechOpen; 2019;91-104.
Google Scholar51.
Xu, XT, Deng, X-Y, Chen, J, et al. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur J Med Chem. 2020;189:112013.
Google Scholar |
Crossref |
Medline52.
Okada, Y, Miyauchi, N, Suzuki, K, et al. Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem Pharm Bull. 1995;43:1385-1387.
Google Scholar |
Crossref |
留言 (0)