1.
Chugh, SS, Havmoeller, R, Narayanan, K, Singh, D, Rienstra, M, Benjamin, EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129(8):837-47.
Google Scholar |
Crossref2.
Nattel, S, Dobrev, D. Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat Rev Cardiol. 2016;13(10):575-90.
Google Scholar |
Crossref3.
Lip, GY, Fauchier, L, Freedman, SB, Van Gelder, I, Natale, A, Gianni, C, et al. Atrial fibrillation. Nat Rev Dis Primers. 2016;2(1):16016-26.
Google Scholar |
Crossref |
Medline4.
Cosedis Nielsen, J, Johannessen, A, Raatikainen, P, Hindricks, G, Walfridsson, H, Kongstad, O, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. New Engl J Med. 2012;367(17):1587-95.
Google Scholar |
Crossref |
Medline5.
Verma, A, Champagne, J, Sapp, J, Essebag, V, Novak, P, Skanes, A, et al. Discerning the incidence of symptomatic and asymptomatic episodes of atrial fibrillation before and after catheter ablation (DISCERN AF): a prospective, multicenter study. JAMA Intern Med. 2013;173(2):149-56.
Google Scholar |
Crossref |
Medline6.
Ouyang, F, Antz, M, Ernst, S, Hachiya, H, Mavrakis, H, Deger, FT, et al. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double lasso technique. Circulation. 2005;111(2):127-35.
Google Scholar |
Crossref7.
Shah, S, Barakat, AF, Saliba, WI, Abdur Rehman, K, Tarakji, KG, Rickard, J, et al. Recurrent atrial fibrillation after initial long-term ablation success. Circ Arrhythm Electrophysiol. 2018;11(4):e005785.
Google Scholar |
Crossref |
Medline8.
Swift, LM, Asfour, H, Muselimyan, N, Larson, C, Armstrong, K, Sarvazyan, NA. Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions. Heart Rhythm. 2018;15(4):564-75.
Google Scholar |
Crossref |
Medline9.
Zhao, X, Fu, X, Blumenthal, C, Wang, YT, Jenkins, MW, Snyder, C, et al. Integrated RFA/PSOCT catheter for real-time guidance of cardiac radio-frequency ablation. Biomed Opt Express. 2018;9(12):6400-11.
Google Scholar |
Crossref10.
Dana, N, Di Biase, L, Natale, A, Emelianov, S, Bouchard, R. In vitro photoacoustic visualization of myocardial ablation lesions. Heart Rhythm. 2014;11(1):150-7.
Google Scholar |
Crossref |
Medline11.
Sayseng, V, Grondin, J, Salgaonkar, VA, Grubb, CS, Basij, M, Mehrmohammadi, M, et al. Catheter ablation lesion visualization with intracardiac strain imaging in canines and humans. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(9):1800-10.
Google Scholar |
Crossref |
Medline12.
Wickline, SA, Thomas, Lj, Miller, J G, Sobel, B E, Perez, J E. Sensitive detection of the effects of reperfusion on myocardium by ultrasonic tissue characterization with integrated backscatter. Circulation. 1986;74(2):389-400.
Google Scholar |
Crossref |
Medline13.
Milunski, MR, Mohr, GA, Wear, KA, Sobel, BE, Miller, JG, Wickline, SA. Early identification with ultrasonic integrated backscatter of viable but stunned myocardium in dogs. J Am Coll Cardiol. 1989;14(2):462-71.
Google Scholar |
Crossref |
Medline14.
Milunski, MR, Mohr, GA, Pérez, JE, Vered, Z, Wear, KA, Gessler, CJ, et al. Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation. 1989;80(3):491-503.
Google Scholar |
Crossref |
Medline15.
Zhu, H, Zhang, W, Zhong, M, Zhang, G, Zhang, Y. Myocardial ultrasonic integrated backscatter analysis in patients with chronic atrial fibrillation. Int J Cardiovasc Imaging. 2010;26(8):861-5.
Google Scholar |
Crossref16.
Sasaki, N, Okumura, Y, Watanabe, I, Nagashima, K, Sonoda, K, Kogawa, R, et al. Transthoracic echocardiographic backscatter-based assessment of left atrial remodeling involving left atrial and ventricular fibrosis in patients with atrial fibrillation. Int J Cardiol. 2014;176(3):1064-6.
Google Scholar |
Crossref |
Medline17.
Laugier, P, Berger, G, Fink, M, Perrin, J. Diffraction correction for focused transducers in attenuation measurements in vivo. Ultrason Imaging. 1987;9(4):248-59.
Google Scholar18.
Yao, LX, Zagzebski, JA, Madsen, EL. Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors. Ultrason Imaging. 1990;12(1):58-70.
Google Scholar |
SAGE Journals |
ISI19.
Nam, K, Rosado-Mendez, IM, Wirtzfeld, LA, Pawlicki, AD, Kumar, V, Madsen, EL, et al. Ultrasonic attenuation and backscatter coefficient estimates of rodent-tumor-mimicking structures: comparison of results among clinical scanners. Ultrason Imaging. 2011;33(4):233-50.
Google Scholar |
SAGE Journals20.
D’hooge, J, Bijnens, B, Jamal, F, Pislaru, C, Pislaru, S, Thoen, J, et al. High frame rate myocardial integrated backscatter. Does this change our understanding of this acoustic parameter? Eur J Echocardiogr. 2000;1(1):32-41.
Google Scholar |
Crossref |
Medline21.
Zhao, X, Kilinc, O, Blumenthal, CJ, Dosluoglu, D, Jenkins, MW, Snyder, CS, et al. Intracardiac radiofrequency ablation in living swine guided by polarization-sensitive optical coherence tomography. J Biomed Opt. 2020;25(5):1-10.
Google Scholar22.
Stephens, DN, Truong, UT, Nikoozadeh, A, Oralkan, O, Seo, CH, Cannata, J, et al. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter. J Ultrasound Med. 2012;31(2):247-56.
Google Scholar |
Crossref |
Medline
留言 (0)