Fourier-based Synthetic-aperture Imaging for Arbitrary Transmissions by Cross-correlation of Transmitted and Received Wave-fields

1. Lu, J-y . 2D and 3D high frame rate imaging with limited diffraction beams. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(4):839-56.
Google Scholar | Medline2. Lu, J-y . Experimental study of high frame rate imaging with limited diffraction beams. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(1):84-97.
Google Scholar | Crossref | Medline3. Lu, J-y, Cheng, J, Wang, J. High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings high frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(10):1796-812.
Google Scholar | Crossref4. Cheng, J, Lu, J-y. Extended high-frame rate imaging method with limited-diffraction beams. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(5):880-9.
Google Scholar5. Kruizinga, P, Mastik, F, de Jong, N, van der Steen, AF, van Soest, G. Plane-wave ultrasound beamforming using a nonuniform fast Fourier transform. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(12):2684-91.
Google Scholar | Crossref | Medline6. Garcia, D, Le Tarnec, L, Muth, S, Montagnon, E, Porée, J, Cloutier, G. Stolt’s fk migration for plane wave ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(9):1853-67.
Google Scholar | Crossref | Medline7. Schwab, H-M, Schmitz, G. Full-wave ultrasound reconstruction with linear arrays based on a fourier split-step approach. In 2018 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2018, pp. 1-4.
Google Scholar | Crossref8. Stolt, RH . Migration by Fourier transform. Geophysics. 1978; 43(1):23-48.
Google Scholar | Crossref9. Moghimirad, E, Hoyos, CAV, Mahloojifar, A, Asl, BM, Jensen, JA. Fourier beamformation of multistatic synthetic aperture ultrasound imaging. In 2015 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2015, pp. 1-4.
Google Scholar | Crossref10. Bottenus, N . Recovery of the complete data set from focused transmit beams. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;65(1):30-8.
Google Scholar | Crossref11. Bottenus, N . Recovery of the complete data set from ultrasound sequences with arbitrary transmit delays. In Proceedings of Meetings on Acoustics 174ASA, vol 31. Acoustical Society of America; 2017, p. 020001.
Google Scholar | Crossref12. Ali, R, Dahl, JJ, Bottenus, N. Regularized inversion method for frequency-domain recovery of the full synthetic aperture dataset from focused transmissions. In 2018 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2018, pp. 1-9.
Google Scholar | Crossref13. Ali, R, Herickhoff, CD, Hyun, D, Dahl, JJ, Bottenus, N. Extending retrospective encoding for robust recovery of the multistatic data set. IEEE Trans Ultrason Ferroelectr Freq Control. 2020; 67(5):943-56.
Google Scholar | Crossref14. Ali, R, Dahl, JJ, Bottenus, N. Iterative retrospective recovery of full synthetic aperture data from focused transmissions. In 2019 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2019, pp. 1005-8.
Google Scholar | Crossref15. Bae, M-H, Jeong, M-K. A study of synthetic-aperture imaging with virtual source elements in B-mode ultrasound imaging systems. IEEE Trans Ultrason Ferroelectr Freq Control. 2000; 47(6):1510-9.
Google Scholar | Medline16. Moghimirad, E, Hoyos, CAV, Mahloojifar, A, Asl, BM, Jensen, JA. Synthetic aperture ultrasound Fourier beamformation using virtual sources. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(12):2018-30.
Google Scholar | Crossref | Medline17. Loewenthal, D, Hu, L-z. Two methods for computing the imaging condition for common-shot prestack migration. Geophysics. 1991;56(3):378-81.
Google Scholar | Crossref18. Schleicher, J, Costa, JC, Novais, A. A comparison of imaging conditions for wave-equation shot-profile migration. Geophysics. 2008;73(6):S219-27.
Google Scholar | Crossref19. Duan, Y, Sava, P. Scalar imaging condition for elastic reverse time migration. Geophysics. 2015;80(4):S127-36.
Google Scholar | Crossref20. Valenciano, AA, Biondi, B. 2-D deconvolution imaging condition for shot-profile migration. In 2003 SEG Annual Meeting. Society of Exploration Geophysicists, 2003.
Google Scholar | Crossref21. Biondi, B . Short note: equivalence of source-receiver migration and shot-profile migration. Geophysics. 2003;68(4):1340-7.
Google Scholar | Crossref22. Rao, J, Saini, A, Yang, J, Ratassepp, M, Fan, Z. Ultrasonic imaging of irregularly shaped notches based on elastic reverse time migration. NDT E Int. 2019;107:102135.
Google Scholar | Crossref23. Ali, R, Jennings, J, Dahl, JJ. Medical pulse-echo ultrasound imaging based on the cross-correlation of transmitted and backpropagated-receive wavefields. In 2020 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2020, pp. 1-4.
Google Scholar | Crossref24. Goodman, JW . Introduction to Fourier optics. Englewood, Colorado: Roberts and Company Publishers; 2005.
Google Scholar25. Jensen, JA . Field: a program for simulating ultrasound systems. In 10th Nordicbaltic Conference On Biomedical Imaging, vol 34, supplement 1, part 1. Citeseer; 1996, pp. 351-3.
Google Scholar26. Jensen, JA, Svendsen, NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7.
Google Scholar | Crossref27. Bottenus, N . A method for intrapulse spatial compounding. In 2016 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2016, pp. 1-4.
Google Scholar | Crossref28. Stolk, CC, de Hoop, MV. Modeling of seismic data in the downward continuation approach. SIAM J Appl Math. 2005; 65(4):1388-406.
Google Scholar | Crossref | Medline29. Stolk, CC, Maarten, V. Seismic inverse scattering in the downward continuation approach. Wave Motion. 2006;43(7):579-98.
Google Scholar | Crossref30. Bottenus, N . Comparison of virtual source synthetic aperture beamforming with an element-based model. J Acoust Soc Am. 2018;143(5):2801-12.
Google Scholar | Crossref | Medline31. Ali, R, Dahl, JJ. Distributed phase aberration correction techniques based on local sound speed estimates. In 2018 IEEE International Ultrasonics Symposium (IUS). New York: IEEE; 2018, pp. 1-4.
Google Scholar | Crossref32. Jakovljevic, M, Hsieh, S, Ali, R, Chau, Loo, Kung, G, Hyun, D, Dahl, JJ. Local speed of sound estimation in tissue using pulse-echo ultrasound: model-based approach. J Acoust Soc Am. 2018;144(1):254-66.
Google Scholar | Crossref | Medline33. Stähli, P, Kuriakose, M, Frenz, M, Jaeger, M. Forward model for quantitative pulse-echo speed-of-sound imaging. arXiv preprint arXiv:1902.10639.
Google Scholar34. Jaeger, M, Held, G, Peeters, S, Preisser, S, Grünig, M, Frenz, M. Computed ultrasound tomography in echo mode for imaging speed of sound using pulse-echo sonography: proof of principle. Ultrasound Med Biol. 2015;41(1):235-50.
Google Scholar | Crossref | Medline35. Stoffa, PL, Fokkema, JT, de Luna Freire, R, Kessinger, W. Split-step Fourier migration. Geophysics. 1990;55(4):410-21.
Google Scholar | Crossref36. Gazdag, J, Sguazzero, P. Migration of seismic data by phase shift plus interpolation. Geophysics. 1984;49(2):124-31.
Google Scholar | Crossref37. Sava, P, Biondi, B. Wave-equation migration velocity analysis. I. Theory. Geophys Prospect. 2004;52(6):593-606.
Google Scholar | Crossref

留言 (0)

沒有登入
gif