Assessment of Axillary Lymph Nodes for Metastasis on Ultrasound Using Artificial Intelligence

1. Siegel, RL, Miller, KD, Fuchs, HE, Jemal, A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33.
Google Scholar | Crossref | Medline2. National Cancer Institute . Surveillance, Epidemiology, and End Results Program. Cancer statistics, female breast cancer. Available from: https://seer.cancer.gov/statfacts/html/breast.html (accessed July 20, 2021).
Google Scholar3. [Guideline] NCCN Clinical Practice Guidelines in Oncology . Breast Cancer. National Comprehensive Cancer Network. Version 5.2020, July 15, 2020. Available from: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed March 10, 2021).
Google Scholar4. Fisher, B, Bauer, M, Wickerham, DL, Redmond, CK, Fisher, ER, Cruz, AB, et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer. 1983;52(9):1551-7.
Google Scholar | Crossref5. Carter, CL, Allen, C, Henson, DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer. 1989;63(1):181-7.
Google Scholar | Crossref6. Expert Panel on Breast Imaging ; Slanetz, PJ, Moy, L, Baron, P, diFlorio, RM, Green, ED, et al. ACR appropriateness criteria® monitoring response to neoadjuvant systemic therapy for breast cancer. J Am Coll Radiol. 2017;14(11S):S462-75.
Google Scholar7. Sun, SX, Moseley, TW, Kuerer, HM, Yang, WT. Imaging-based approach to axillary lymph node staging and sentinel lymph node biopsy in patients with breast cancer. AJR Am J Roentgenol. 2020;214(2):249-58.
Google Scholar | Crossref8. Chang, JM, Leung, JWT, Moy, L, Ha, SM, Moon, WK. Axillary nodal evaluation in breast cancer: state of the art. Radiology. 2020;295(3):500-15.
Google Scholar | Crossref9. Ojeda-Fournier, H, Nguyen, JQ. Ultrasound evaluation of regional breast lymph nodes. Semin Roentgenol. 2011;46(1):51-9.
Google Scholar | Crossref | Medline10. Langer, I, Guller, U, Berclaz, G, Koechli, OR, Schaer, G, Fehr, MK, et al. Morbidity of sentinel lymph node biopsy (SLN) alone versus SLN and completion axillary lymph node dissection after breast cancer surgery: a prospective Swiss multicenter study on 659 patients. Ann Surg. 2007;245(3):452-61.
Google Scholar | Crossref | Medline11. Gradishar, WJ, Anderson, BO, Balassanian, R, Blair, SL, Burstein, HJ, Cyr, A, et al. Breast cancer version 2.2015. J Natl Compr Canc Netw. 2015;13(4):448-75.
Google Scholar | Crossref12. Abe, H, Schmidt, RA, Sennett, CA, Shimauchi, A, Newstead, GM. US-guided core needle biopsy of axillary lymph nodes in patients with breast cancer: why and how to do it. Radiographics. 2007;27(Suppl. 1):S91-9.
Google Scholar | Crossref | Medline13. Masthi, GK, Krishnappa, R, Rajagopalan, S. A simple scoring system to determine axillary lymph node metastasis in carcinoma breast. Int Surg J. 2019;6(8):2889-94.
Google Scholar | Crossref14. Murata, T, Watase, C, Shiino, S, Jimbo, K, Iwamoto, E, Yoshida, M, et al. Development and validation of a preoperative scoring system to distinguish between nonadvanced and advanced axillary lymph node metastasis in patients with early-stage breast cancer. Clin Breast Cancer. Epub ahead of print 17 November 2020. doi:10.1016/j.clbc.2020.11.008.
Google Scholar | Crossref15. Zheng, Q, Yang, L, Zeng, B, Li, J, Guo, K, Liang, Y, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: a systematic review and meta-analysis. EClinicalMedicine. 2020;31:100669.
Google Scholar | Crossref | Medline16. Zhang, Q, Suo, J, Chang, W, Shi, J, Chen, M. Dual-modal computer-assisted evaluation of axillary lymph node metastasis in breast cancer patients on both real-time elastography and B-mode ultrasound. Eur J Radiol. 2017;95:66-74.
Google Scholar | Crossref | Medline17. Chmielewski, A, Dufort, P, Scaranelo, AM. A computerized system to assess axillary lymph node malignancy from sonographic images. Ultrasound Med Biol. 2015;41(10):2690-9.
Google Scholar | Crossref | Medline18. Coronado-Gutierrez, D, Santamaria, G, Ganau, S, Bargallo, X, Orlando, S, Oliva-Branas, ME, et al. Quantitative ultrasound image analysis of axillary lymph nodes to diagnose metastatic involvement in breast cancer. Ultrasound Med Biol. 2019; 45(11):2932-41.
Google Scholar | Crossref | Medline19. Guo, X, Liu, Z, Sun, C, Zhang, L, Wang, Y, Li, Z, et al. Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer. EBioMedicine. 2020;60:103018.
Google Scholar | Crossref | Medline20. Lee, YW, Huang, CS, Shih, CC, Chang, RF. Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks. Comput Biol Med. 2021;130: 104206.
Google Scholar | Crossref | Medline21. Sun, Q, Lin, X, Zhao, Y, Li, L, Yan, K, Liang, D, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol. 2020;10:53.
Google Scholar | Crossref | Medline22. Zhou, LQ, Wu, XL, Huang, SY, Wu, GG, Ye, HR, Wei, Q, et al. Lymph node metastasis prediction from primary breast cancer us images using deep learning. Radiology. 2020;294(1):19-28.
Google Scholar | Crossref | Medline23. Zheng, X, Yao, Z, Huang, Y, Yu, Y, Wang, Y, Liu, Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun. 2020;11(1):1236.
Google Scholar | Crossref | Medline24. Li, FF, Li, J. Cloud AutoML: making AI accessible to every business. Google Cloud, 2018. Available from: https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/ (accessed March 10, 2021).
Google Scholar25. Pandey, P . AutoML: the next wave of machine learning. Heartbeat in Medium, 2019. Available from: https://heartbeat.fritz.ai/automl-the-next-wave-of-machine-learning-5494baac615f (accessed Febraury 12, 2021).
Google Scholar26. Heller, M. Automated machine learning or AutoML explained. InfoWorld, 2019. Available from: https://www.infoworld.com/article/3430788/automated-machine-learning-or-automl-explained.html (accessed March 10, 2021).
Google Scholar27. Wang, S, Liu, JB, Zhu, Z, Eisenbrey, J. Artificial intelligence in ultrasound imaging: current research and applications. Adv Ultrasound Diagn Ther. 2019;3(3):53-61.
Google Scholar | Crossref28. Wang, S, Niu, S, Qu, E, Forsberg, F, Wilkes, A, Sevrukov, A, et al. Characterization of indeterminate breast lesions on B-mode ultrasound using automated machine learning models. J Med Imaging. 2020;7(5):057002.
Google Scholar | Crossref29. Gummadi, S, Patel, N, Naringrekar, H, Needleman, L, Lyshchik, A, O’Kane, P, et al. Automated machine learning in the sonographic diagnosis of non-alcoholic fatty liver disease. Adv Ultrasound Diagn Ther. 2020;4(3):176-182.
Google Scholar | Crossref30. Wang, S, Xu, J, Tahmasebi, A, Daniels, K, Liu, JB, Curry, J, et al. Incorporation of a machine learning algorithm with object detection within the thyroid imaging reporting and data system improves the diagnosis of genetic risk. Front Oncol. 2020;10: 591846.
Google Scholar | Crossref | Medline31. Daniels, K, Gummadi, S, Zhu, Z, Wang, S, Patel, J, Swendseid, B, et al. Machine learning by ultrasonography for genetic risk stratification of thyroid nodules. JAMA Otolaryngol Head Neck Surg. 2020;146(1):36-41.
Google Scholar | Crossref | Medline32. Cloud Vision API-AutoML Vision-AutoML Vision Object Detection-Documentation-Guides . Available from: https://cloud.google.com/vision/automl/object-detection/docs/train. Last updated 2021-07-19 UTC
Google Scholar33. Drukker, K, Giger, M, Meinel, LA, Starkey, A, Janardanan, J, Abe, H. Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients. Int J Comput Assist Radiol Surg. 2013;8(6):895-903.
Google Scholar | Crossref | Medline34. Wan, KW, Wong, CH, Ip, HF, Fan, D, Yuen, PL, Fong, HY, et al. Evaluation of the performance of traditional machine learning algorithms, convolutional neural network and AutoML Vision in ultrasound breast lesions classification: a comparative study. Quant Imaging Med Surg. 2021;11(4):1381-93.
Google Scholar | Crossref

留言 (0)

沒有登入
gif