Almeida, A., Almeida, J., Bolaños, J. P., Moncada, S. (2001). Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15294–15299.
https://doi.org/10.1073/pnas.261560998 Google Scholar |
Crossref |
Medline Almeida, A., Moncada, S., Bolaños, J. (2004). Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology, 6(1), 45–51.
https://doi.org/10.1038/ncb1080 Google Scholar |
Crossref |
Medline Bousoik, E., Montazeri Aliabadi, H. (2018). “Do We know jack” about JAK? A closer Look at JAK/STAT signaling pathway. Frontiers in Oncology, 8, 287.
https://doi.org/10.3389/fonc.2018.00287 Google Scholar |
Crossref |
Medline Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A., Stella, A. M. (2007). Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nature Reviews Neuroscience, 8(10), 766–775.
https://doi.org/10.1038/nrn2214 Google Scholar |
Crossref |
Medline Chitnis, T., Weiner, H. L. (2017). CNS inflammation and neurodegeneration. The Journal of Clinical Investigation, 127(10), 3577–3587.
https://doi.org/10.1172/JCI90609 Google Scholar |
Crossref |
Medline Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proceedings of the National Academy of Sciences of the United States of America, 88(14), 6368–6371.
https://doi.org/10.1073/pnas.88.14.6368 Google Scholar |
Crossref |
Medline |
ISI Duhé, R. J., Evans, G. A., Erwin, R. A., Kirken, R. A., Cox, G. W., Farrar, W. L. (1998). Nitric oxide and thiol redox regulation of Janus kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 95(1), 126–131.
https://doi.org/10.1073/pnas.95.1.126 Google Scholar |
Crossref |
Medline |
ISI Fife, B. T., Huffnagle, G. B., Kuziel, W. A., Karpus, W. J. (2000). CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 192(6), 899–905.
https://doi.org/10.1084/jem.192.6.899 Google Scholar |
Crossref |
Medline Griffith, J. W., Sokol, C. L., Luster, A. D. (2014). Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annual Review of Immunology, 32, 659–702.
https://doi.org/10.1146/annurev-immunol-032713-120145 Google Scholar |
Crossref |
Medline |
ISI Guthrie, L. N., Abiraman, K., Plyler, E. S., Sprenkle, N. T., Gibson, S. A., McFarland, B. C., Rajbhandari, R., Rowse, A. L., Benveniste, E. N., Meares, G. P. (2016). Attenuation of PKR-like ER kinase (PERK) signaling selectively controls endoplasmic reticulum stress-induced inflammation without compromising immunological responses. Journal of Biological Chemistry, 291(30), 15830–15840.
https://doi.org/10.1074/jbc.M116.738021 Google Scholar |
Crossref |
Medline Ha, H. C., Snyder, S. H. (1999). Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13978–13982.
https://doi.org/10.1073/pnas.96.24.13978 Google Scholar |
Crossref |
Medline Harding, H., Zhang, Y., Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397(6716), 271–274.
https://doi.org/10.1038/16729 Google Scholar |
Crossref |
Medline |
ISI Hess, D. T., Stamler, J. S. (2012). Regulation by S-nitrosylation of protein post-translational modification. Journal of Biological Chemistry, 287(7), 4411–4418.
https://doi.org/10.1074/jbc.R111.285742 Google Scholar |
Crossref |
Medline Hetz, C., Saxena, S. (2017). ER stress and the unfolded protein response in neurodegeneration. Nature Reviews. Neurology, 13(8), 477–491.
https://doi.org/10.1038/nrneurol.2017.99 Google Scholar |
Crossref |
Medline Iadecola, C., Anrather, J. (2011). The immunology of stroke: From mechanisms to translation. Nature Medicine, 17(7), 796–808.
https://doi.org/10.1038/nm.2399 Google Scholar |
Crossref |
Medline |
ISI Ill-Raga, G., Tajes, M., Busquets-García, A., Ramos-Fernández, E, Vargas, L. M., Bosch-Morató, M., Guivernau, B., Valls-Comamala, V., Eraso-Pichot, A., Guix, F. X., Fandos, C., Rosen , M. D., Rabinowitz, M. H., Maldonado, R., Alvarez, A. R., Ozaita, A., Muñoz, F. J. (2015). Physiological control of nitric oxide in neuronal BACE1 translation by heme-regulated eIF2α kinase HRI induces synaptogenesis. Antioxidants & Redox Signaling, 22(15), 1295–1307.
https://doi.org/10.1089/ars.2014.6080 Google Scholar |
Crossref |
Medline Karpus, W. J . (2020). Cytokines and chemokines in the pathogenesis of experimental autoimmune encephalomyelitis. Journal of Immunology, 204(2), 316–326.
https://doi.org/10.4049/jimmunol.1900914 Google Scholar |
Crossref |
Medline Keefer, L. K., Nims, R. W., Davies, K. M., Wink, D. A. (1996). “NONOates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms. Methods in Enzymology, 268, 281–293.
https://doi.org/10.1016/S0076-6879(96)68030-6 Google Scholar |
Crossref |
Medline |
ISI Kim, R. Y., Hoffman, A. S., Itoh, N., Ao, Y., Spence, R., Sofroniew, M. V., Voskuhl, R. R. (2014). Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 274(1-2), 53–61.
https://doi.org/10.1016/j.jneuroim.2014.06.009 Google Scholar |
Crossref |
Medline Liu, J. S., Zhao, M. L., Brosnan, C. F., Lee, S. C. (2001). Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. American Journal of Pathology, 158(6), 2057–2066.
https://doi.org/10.1016/S0002-9440(10)64677-9 Google Scholar |
Crossref |
Medline Luo, J. D., Chen, A. F. (2005). Nitric oxide: A newly discovered function on wound healing. Acta Pharmacologica Sinica, 26(3), 259–264.
https://doi.org/10.1111/j.1745-7254.2005.00058.x Google Scholar |
Crossref |
Medline Martínez-Ruiz, A., Cadenas, S., Lamas, S. (2011). Nitric oxide signaling: Classical, less classical, and nonclassical mechanisms. Free Radical Biology & Medicine, 51(1), 17–29.
https://doi.org/10.1016/j.freeradbiomed.2011.04.010 Google Scholar |
Crossref |
Medline Meares, G. P., Hughes, K. J., Naatz, A., Papa, F. R., Urano, F., Hansen, P. A., Benveniste, E. N., Corbett, J. A. (2011). IRE1-dependent activation of AMPK in response to nitric oxide. Molecular and Cellular Biology, 31(21), 4286–4297.
https://doi.org/10.1128/MCB.05668-11 Google Scholar |
Crossref |
Medline Meares, G. P., Liu, Y., Rajbhandari, R., Qin, H., Nozell, S. E., Mobley, J. A., Corbett, J. A., Benveniste, E. N. (2014). PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Molecular and Cellular Biology, 34(20), 3911–3925.
https://doi.org/10.1128/MCB.00980-14 Google Scholar |
Crossref |
Medline Nakamura, T., Tu, S., Akhtar, M. W., Sunico, C. R., Okamoto, S., Lipton, S. A. (2013). Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron, 78(4), 596–614.
https://doi.org/10.1016/j.neuron.2013.05.005 Google Scholar |
Crossref |
Medline Nakato, R., Ohkubo, Y., Konishi, A., Shibata, M., Kaneko, Y., Iwawaki, T., Nakamura, T., Lipton, S. A., Uehara, T. (2015). Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Scientific Reports, 5, 14812.
https://doi.org/10.1038/srep14812 Google Scholar |
Crossref |
Medline Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., Gorman, A. M. (2016). The integrated stress response. EMBO Reports, 17(10), 1374–1395.
https://doi.org/10.15252/embr.201642195 Google Scholar |
Crossref |
Medline Picón-Pagès, P., Garcia-Buendia, J., Muñoz, F. J. (2019). Functions and dysfunctions of nitric oxide in brain. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1865(8), 1949–1967.
https://doi.org/10.1016/j.bbadis.2018.11.007 Google Scholar |
Crossref |
Medline Püschel, F., Favaro, F., Redondo-Pedraza, J., Lucendo, E., Iurlaro, R., Marchetti, S., Majem, B., Eldering, E, Nadal, E., Ricci, J. E., Chevet, E., Muñoz-Pinedo, P. (2020). Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proceedings of the National Academy of Sciences of the United States of America, 117(18), 9932–9941.
https://doi.org/10.1073/pnas.1913707117 Google Scholar |
Crossref |
Medline Radi, R . (2013). Protein tyrosine nitration: Biochemical mechanisms and structural basis of functional effects. Accounts of Chemical Research, 46(2), 550–559.
https://doi.org/10.1021/ar300234c Google Scholar |
Crossref |
Medline Ransohoff, R. M . (2016). How neuroinflammation contributes to neurodegeneration. Science (New York, N.Y.), 353(6301), 777–783.
https://doi.org/10.1126/science.aag2590 Google Scholar |
Crossref |
Medline |
ISI Ransohoff, R. M., Brown, M. A. (2012). Innate immunity in the central nervous system. The Journal of Clinical Investigation, 122(4), 1164–1171.
https://doi.org/10.1172/JCI58644 Google Scholar |
Crossref |
Medline |
ISI Rumble, J. M., Huber, A. K., Krishnamoorthy, G., Srinivasan, A., Giles, D. A., Zhang, X., Wang, L., Segal, B. M. (2015). Neutrophil-related factors as biomarkers in EAE and MS. Journal of Experimental Medicine, 212(1), 23–35.
https://doi.org/10.1084/jem.20141015 Google Scholar |
Crossref |
Medline Sanchez, C. L., Sims, S. G., Nowery, J. D., Meares, G. P. (2019). Endoplasmic reticulum stress differentially modulates the IL-6 family of cytokines in murine astrocytes and macrophages. Scientific Reports, 9(1), 14931.
https://doi.org/10.1038/s41598-019-51481-6 Google Scholar |
Crossref |
Medline Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., Vedantham, P., Hearn, B. R., Li, H., Gamache, K., Gallagher, C. M., Ang, K. K-H, Wilson, C, Okreglak, V., Ashkenazi, A., Hann, B., Nader, K., Arkin, M. R., Renslo, A. R., Sonenberg, N., Walter, P. (2013). Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife, 2, e00498.
https://doi.org/10.7554/eLife.00498 Google Scholar |
Crossref |
Medline Sims, S. G., Meares, G. P. (2019). Janus kinase 1 is required for transcriptional reprograming of murine astrocytes in response to endoplasmic reticulum stress. Frontiers in Cellular Neuroscience, 13, 446.
https://doi.org/10.3389/fncel.2019.00446 Google Scholar |
Crossref |
Medline Smith, H. L., Freeman, O. J., Butcher, A. J., Holmqvist, S., Humoud, I, Schätzl, T., Hughes, D. T., Verity, N. C., Swinden, D. P., Hayes, J., de Weerd, L., Rowitch, D. H., Franklin, R. J. M., Mallucci, G. R. (2020). Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron, 105(5), 855–866.e855.
https://doi.org/10.1016/j.neuron.2019.12.014 Google Scholar |
Crossref |
Medline Stewart, V. C., Sharpe, M. A., Clark, J. B., Heales, S. J. (2000). Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. Journal of Neurochemistry, 75(2), 694–700.
https://doi.org/10.1046/j.1471-4159.2000.0750694.x Google Scholar |
Crossref |
Medline Stoolman, J. S., Duncker, P. C., Huber, A. K., Giles, D. A., Washnock-Schmid, J. M., Soulika, A. M., Segal, B. M. (2018). An IFNγ/CXCL2 regulatory pathway determines lesion localization during EAE. Journal of Neuroinflammation, 15(1), 208.
https://doi.org/10.1186/s12974-018-1237-y Google Scholar |
Crossref |
Medline Tong, L., Heim, R. A., Wu, S. (2011). Nitric oxide: A regulator of eukaryotic initiation factor 2 kinases. Free Radical Biology & Medicine, 50(12), 1717–1725.
https://doi.org/10.1016/j.freeradbiomed.2011.03.032
留言 (0)