1.
Guillemin, R, Rosenberg, B. Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology. 1955;57(5):599-607.
Google Scholar |
Crossref |
Medline2.
Saffran, M, Schally, AV, Benefey, BG. Stimulation of the release of corticotropin from the adenohypophysis by a neurohypophysial factor. Endocrinology. 1955;57(4):439-444.
Google Scholar |
Crossref |
Medline3.
Spiess, J, Rivier, J, Rivier, C, Vale, W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci USA. 1981;78(10):6517-6521.
Google Scholar |
Crossref |
Medline4.
Vale, W, Spiess, J, Rivier, C, Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213(4514):1394-1397.
Google Scholar |
Crossref |
Medline |
ISI5.
Vaughan, J, Donaldson, C, Bittencourt, J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378(6554):287-292.
Google Scholar |
Crossref |
Medline6.
Reyes, TM, Lewis, K, Perrin, MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. J Am Coll Cardiol. 2001;98(5):2843-2848.
Google Scholar7.
Hsu, SY, Hsueh, AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605-611.
Google Scholar |
Crossref |
Medline8.
Vuppaladhadiam, L, Ehsan, C, Akkati, M, Bhargava, A. Corticotropin-releasing factor family: a stress hormone-receptor system’s emerging role in mediating sex-specific signaling. Cells. 2020;9(4):839.
Google Scholar |
Crossref9.
Chatzaki, E, Kefala, N, Drosos, I, Lalidou, F, Baritaki, S. Do urocortins have a role in treating cardiovascular disease? Drug Discov Today. 2019;24(1):279-284.
Google Scholar |
Crossref |
Medline10.
Kageyama, K, Bradbury, MJ, Zhao, L, Blount, AL, Vale, WW. Urocortin messenger ribonucleic acid: tissue distribution in the rat and regulation in thymus by lipopolysaccharide and glucocorticoids. Endocrinology. 1999;140(12):5651-5658.
Google Scholar |
Crossref |
Medline11.
Tillinger, A, Nostramo, R, Kvetnansky, R, Serova, L, Sabban, EL. Stress-induced changes in gene expression of urocortin 2 and other CRH peptides in rat adrenal medulla: involvement of glucocorticoids. J Neurochem. 2013;125(2):185-192.
Google Scholar |
Crossref |
Medline12.
Patel, K, Rademaker, MT, Kirkpatrick, CM, et al. Comparative pharmacokinetics and pharmacodynamics of urocortins 1, 2 and 3 in healthy sheep. Br J Pharmacol. 2012;166(6):1916-1925.
Google Scholar |
Crossref |
Medline13.
Davis, ME, Pemberton, CJ, Yandle, TG, et al. Effect of urocortin 1 infusion in humans with stable congestive cardiac failure. Clin Sci. 2005;109(4):381-388.
Google Scholar |
Crossref14.
Liew, HK, Pang, CY, Hsu, CW, et al. Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats. J Neuroinflammation. 2012;9:13.
Google Scholar |
Crossref |
Medline |
ISI15.
Okada, T, Suzuki, H, Travis, ZD, Zhang, JH. The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target. Curr Neuropharmacol. 2020;18(12):1.
Google Scholar |
Crossref16.
Tu, H, Kastin, AJ, Bjorbaek, C, Pan, W. Urocortin trafficking in cerebral microvessel endothelial cells. J Mol Neurosci. 2007;31(2):171-181.
Google Scholar |
Medline17.
Squillacioti, C, Pelagalli, A, Liguori, G, Mirabella, N. Urocortins in the mammalian endocrine system. Acta Vet Scand. 2019;61(1):46.
Google Scholar |
Crossref |
Medline18.
Takefuji, M, Murohara, T. Corticotropin-releasing hormone family and their receptors in the cardiovascular system. Circ J. 2019;83(2):261-266.
Google Scholar |
Crossref |
Medline19.
Kimura, Y, Takahashi, K, Totsune, K, et al. Expression of urocortin and corticotropin-releasing factor receptor subtypes in the human heart. J Clin Endocrinol Metab. 2002;87(1):340-346.
Google Scholar |
Crossref |
Medline20.
Hoare, SRJ, Sullivan, SK, Fan, J, Khongsaly, K, Grigoriadis, DE. Peptide ligand binding properties of the corticotropin-releasing factor (CRF) type 2 receptor: pharmacology of endogenously expressed receptors, G-protein-coupling sensitivity and determinants of CRF2 receptor selectivity. Peptides. 2005;26(3):457-470.
Google Scholar |
Crossref |
Medline21.
Grammatopoulos, DK . Insights into mechanisms of corticotropin releasing hormone receptor signal transduction. Br J Pharmacol. 2012;166(1):85-97.
Google Scholar |
Crossref |
Medline22.
Walther, S, Pluteanu, F, Renz, S, et al. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt-and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart. 2014;307(5):H689-H700.
Google Scholar |
Crossref |
Medline23.
Asaba, K, Makino, S, Hashimoto, K. Effect of urocortin on ACTH secretion from rat anterior pituitary in vitro and in vivo: comparison with corticotropin-releasing hormone. Brain Res. 1998;806(1):95-103.
Google Scholar |
Crossref |
Medline24.
Tanaka, M, Telegdy, G. Antidepressant-like effects of the CRF family peptides, urocortin 1, urocortin 2 and urocortin 3 in a modified forced swimming test in mice. Brain Res Bull. 2008; 75(5):509-512.
Google Scholar |
Crossref |
Medline25.
Wagner, S . Urocortins and their unfolding role in mammalian social behavior. Cell Tissue Res. 2019;375(1):133-142.
Google Scholar |
Crossref |
Medline26.
Nemoto, T, Iwasaki-Sekino, A, Yamauchi, N, Shibasaki, T. Role of urocortin 2 secreted by the pituitary in the stress-induced suppression of luteinizing hormone secretion in rats. Am J Physiol Endocrinol Metab. 2010;299(4):E567-E575.
Google Scholar |
Crossref |
Medline27.
Nakade, Y, Pappas, TN, Takahashi, T. Peripheral plasma corticotropin-releasing factor concentration does not correlate with augmented colonic motility in response to restraint stress in rats. Clin Exp Pharmacol Physiol. 2008;35(8):934-937.
Google Scholar |
Crossref |
Medline28.
Wu, Y, Du, JZ. Effect of hypoxia on activity of hypothalamo-pituitary-adrenal-cortex axis in rat. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2001;17(4):317-319.
Google Scholar |
Medline29.
Tibenska, V, Benesova, A, Vebr, P, et al. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J Appl Physiol (1985). 2020;128(4):1023-1032.
Google Scholar |
Crossref |
Medline30.
Tsibulnikov, SY, Maslov, LN, Naryzhnaya, NV, et al. Impact of cold adaptation on cardiac tolerance to ischemia/reperfusion and glucocorticoid, thyroid hormone levels. Gen Physiol Biophys. 2019;38(3):245-251.
Google Scholar |
Crossref |
Medline31.
Maslov, LN, Naryzhnaya, NV, Tsibulnikov, SY, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013;93(9-11):373-379.
Google Scholar |
Crossref |
Medline |
ISI32.
Wakahashi, S, Nakabayashi, K, Maruo, N, Yata, A, Ohara, N, Maruo, T. Effects of corticotropin-releasing hormone and stresscopin on vascular endothelial growth factor mRNA expression in cultured early human extravillous trophoblasts. Endocrine. 2008;33(2):144-151.
Google Scholar |
Crossref |
Medline33.
Stirrat, CG, Venkatasubramanian, S, Pawade, T, et al. Cardiovascular effects of urocortin 2 and urocortin 3 in patients with chronic heart failure. Br J Clin Pharmacol. 2016;82(4):974-982.
Google Scholar |
Crossref |
Medline34.
Wiley, KE, Davenport, AP. CRF2 receptors are highly expressed in the human cardiovascular system and their cognate ligands urocortins 2 and 3 are potent vasodilators. Br J Pharmacol. 2004;143(4):508-514.
Google Scholar |
Crossref |
Medline35.
Schilling, L, Kanzler, C, Schmiedek, P, Ehrenreich, H. Characterization of the relaxant action of urocortin, a new peptide related to corticotropin-releasing factor in the rat isolated basilar artery. Br J Pharmacol. 1998;125(6):1164-1171.
Google Scholar |
Crossref |
Medline36.
Lubomirov, LT, Gagov, H, Petkova-Kirova, P, Duridanova, D, Kalentchuk, VU, Schubert, R. Urocortin relaxes rat tail arteries by a PKA-mediated reduction of the sensitivity of the contractile apparatus for calcium. Br J Pharmacol. 2001;134(7):1564-1570.
Google Scholar |
Crossref |
Medline37.
Huang, Y, Chan, FL, Lau, CW, et al. Urocortin-induced endothelium-dependent relaxation of rat coronary artery: role of nitric oxide and K+ channels. Br J Pharmacol. 2002;135(6):1467-1476.
Google Scholar |
Crossref |
Medline38.
Huang, Y, Chan, FL, Lau, CW, et al. Roles of cyclic AMP and Ca2+-activated K+ channels in endothelium-independent relaxation by urocortin in the rat coronary artery. Cardiovasc Res. 2003;57(3):824-833.
Google Scholar |
Crossref |
Medline39.
Chan, YC, Yao, XQ, Lau, CW, et al. The relaxant effect of urocortin in rat pulmonary arteries. Regul Pept. 2004;121(1-3):11-18.
Google Scholar |
Crossref |
Medline40.
Miki, I, Seya, K, Motomura, S, Furukawa, K. Role of corticotropin-releasing factor receptor type 2 beta in urocortin-induced vasodilation of rat aortas. J Pharmacol Sci. 2004;96(2):170-176.
Google Scholar |
Crossref |
Medline41.
Chen, ZW, Huang, Y, Yang, Q, Li, X, Wei, W, He, GW. Urocortin-induced relaxation in the human internal mammary artery. Cardiovasc Res. 2005;65(4):913-920.
Google Scholar |
Crossref |
Medline42.
Smani, T, Domínguez-Rodríguez, A, Hmadcha, A, Calderón-Sánchez, E, Horrillo-Ledesma, A, Ordóñez, A. Role of Ca2+-independent phospholipase A2 and store-operated pathway in urocortin-induced vasodilatation of rat coronary artery. Circ Res. 2007;101(11):1194-1203.
Google Scholar |
Crossref |
Medline43.
Abdelrahman, M, Syyong, HT, Tjahjadi, AA, Pang, CC. Analysis of the mechanism of the vasodepressor effect of urocortin in anesthetized rats. Pharmacology. 2005;7(4):175-179.
Google Scholar |
Crossref44.
Rademaker, MT, Charles, CJ, Espiner, EA, et al. Beneficial hemodynamic, endocrine, and renal effects of urocortin in experimental heart failure: comparison with normal sheep. J Am Coll Cardiol. 2002;40(8):1495-1505.
Google Scholar |
Crossref |
Medline45.
Venkatasubramanian, S, Griffiths, ME, McLean, SG, et al. Vascular effects of urocortins 2 and 3 in healthy volunteers. J Am Heart Assoc. 2013;2(1):e004267.
Google Scholar |
Crossref |
Medline46.
Adao, R, Mendes-Ferreira, P, Santos-Ribeiro, D, et al. Urocortin-2 improves right ventricular function and attenuates pulmonary arterial hypertension. Cardiovasc Res. 2018;114(8):1165-1177.
Google Scholar |
Crossref |
Medline47.
Takatani-Nakase, T, Takahashi, K. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia. Biochem Biophys Res Commun. 2010;402(2):216-221.
Google Scholar |
Crossref |
Medline48.
Williams, SD, Gottlieb, RA. Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2) attenuates mitochondrial phospholipid loss and is cardioprotective. Biochem J. 2002;362(Pt 1):23-32.
Google Scholar |
Crossref |
Medline49.
Okosi, A, Brar, BK, Chan, M, et al. Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides. 1998;32(2):167-171.
Google Scholar
留言 (0)