Chronic Sildenafil Therapy in the ZSF1 Obese Rat Model of Metabolic Syndrome and Heart Failure With Preserved Ejection Fraction

1. Dunlay, SM, Roger, VL, Redfield, MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602.
Google Scholar | Crossref | Medline2. Borlaug, BA . The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2014;11(9):507–515.
Google Scholar | Crossref | Medline3. Lourenco, AP, Leite-Moreira, AF, Balligand, JL, et al. An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur J Heart Fail. 2018;20(2):216–227.
Google Scholar | Crossref | Medline4. Paulus, WJ, Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–271.
Google Scholar | Crossref | Medline | ISI5. Guazzi, M, Vicenzi, M, Arena, R, Guazzi, MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124(2):164–174.
Google Scholar | Crossref | Medline | ISI6. Ferreira-Melo, SE, Yugar-Toledo, JC, Coelho, OR, et al. Sildenafil reduces cardiovascular remodeling associated with hypertensive cardiomyopathy in NOS inhibitor-treated rats. Eur J Pharmacol. 2006;542(1-3):141–147.
Google Scholar | Crossref | Medline7. Bishu, K, Hamdani, N, Mohammed, SF, et al. Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation. 2011;124(25):2882–2891.
Google Scholar | Crossref | Medline8. Redfield, MM, Chen, HH, Borlaug, BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309(12):1268–1277.
Google Scholar | Crossref | Medline | ISI9. Silverman, DN, Shah, SJ. Treatment of heart failure with preserved ejection fraction (HFpEF): the phenotype-guided approach. Curr Treat Options Cardiovasc Med. 2019;21(4):20.
Google Scholar | Crossref | Medline10. Shah, SJ . Precision medicine for heart failure with preserved ejection fraction: an overview. J Cardiovasc Transl Res. 2017;10(3):233–244.
Google Scholar | Crossref | Medline11. Hamdani, N, Franssen, C, Lourenco, A, et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 2013;6(6):1239–1249.
Google Scholar | Crossref | Medline12. Leite, S, Oliveira-Pinto, J, Tavares-Silva, M, et al. Echocardiography and invasive hemodynamics during stress testing for diagnosis of heart failure with preserved ejection fraction: an experimental study. Am J Physiol Heart Circ Physiol. 2015;308(2):H1556–H1563.
Google Scholar | Crossref | Medline13. Leite, S, Rodrigues, S, Tavares-Silva, M, et al. Afterload-induced diastolic dysfunction contributes to high filling pressures in experimental heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2015;309(10):H1648–H1654.
Google Scholar | Crossref | Medline14. Leite, S, Cerqueira, RJ, Ibarrola, J, et al. Arterial remodeling and dysfunction in the ZSF1 rat model of heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(7):e005596.
Google Scholar | Crossref | Medline15. Zacharias, M, Joffe, S, Konadu, E, et al. Clinical epidemiology of heart failure with preserved ejection fraction (HFpEF) in comparatively young hospitalized patients. Int J Cardiol. 2016;202:918–921.
Google Scholar | Crossref | Medline16. Vasques-Nóvoa, F, Laundos, TL, Cerqueira, RJ, et al. MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock. Crit Care Med. 2018;46(9):e945–e954.
Google Scholar | Crossref | Medline17. Belyavskiy, E, Ovchinnikov, A, Potekhina, A, Ageev, F, Edelmann, F. Phosphodiesterase 5 inhibitor sildenafil in patients with heart failure with preserved ejection fraction and combined pre- and postcapillary pulmonary hypertension: a randomized open-label pilot study. BMC Cardiovasc Disord. 2020;20(1):408.
Google Scholar | Crossref | Medline18. Wang, H, Anstrom, K, Ilkayeva, O, et al. Sildenafil treatment in heart failure with preserved ejection fraction: targeted metabolomic profiling in the RELAX trial. JAMA Cardiol. 2017;2(8):896–901.
Google Scholar | Crossref | Medline19. de Denus, S, Rouleau, JL, Mann, DL, et al. CYP3A4 genotype is associated with sildenafil concentrations in patients with heart failure with preserved ejection fraction. Pharmacogenomics J. 2018;18(2):232–237.
Google Scholar | Crossref | Medline20. Fukuma, N, Takimoto, E, Ueda, K, et al. Estrogen receptor-α non-nuclear signaling confers cardioprotection and is essential to cGMP-PDE5 inhibition efficacy. JACC Basic Transl Sci. 2020;5(3):282–295.
Google Scholar | Crossref | Medline21. Lindman, BR, Zajarias, A, Madrazo, JA, et al. Effects of phosphodiesterase type 5 inhibition on systemic and pulmonary hemodynamics and ventricular function in patients with severe symptomatic aortic stenosis. Circulation. 2012;125(19):2353–2362.
Google Scholar | Crossref | Medline | ISI22. Quinaglia, T, de Faria, AP, Fontana, V, et al. Acute cardiac and hemodynamic effects of sildenafil on resistant hypertension. Eur J Clin Pharmacol. 2013;69(12):2027–2036.
Google Scholar | Crossref | Medline23. Mátyás, C, Németh, BT, Oláh, A, et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur J Heart Fail. 2017;19(3):326–336.
Google Scholar | Crossref | Medline24. Cruz, L, Ryan, JJ. Nitric oxide signaling in heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2017;2(3):341–343.
Google Scholar | Crossref | Medline25. Cavalcanti, CO, Alves, RR, de Oliveira, AL, et al. Inhibition of PDE5 restores depressed baroreflex sensitivity in renovascular hypertensive rats. Front Physiol. 2016;7:15.
Google Scholar | Crossref | Medline26. Shin, HS, Bae, SK, Lee, MG. Pharmacokinetics of sildenafil after intravenous and oral administration in rats: hepatic and intestinal first-pass effects. Int J Pharm. 2006;320(1-2):64–70.
Google Scholar | Crossref | Medline | ISI27. Yin, J, Kukucka, M, Hoffmann, J, et al. Sildenafil preserves lung endothelial function and prevents pulmonary vascular remodeling in a rat model of diastolic heart failure. Circ Heart Fail. 2011;4(2):198–206.
Google Scholar | Crossref | Medline28. Sasser, JM, Baylis, C. Effects of sildenafil on maternal hemodynamics and fetal growth in normal rat pregnancy. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R433–R438.
Google Scholar | Crossref | Medline29. Mahmud, A, Hennessy, M, Feely, J. Effect of sildenafil on blood pressure and arterial wave reflection in treated hypertensive men. J Hum Hypertens. 2001;15(10):707–713.
Google Scholar | Crossref | Medline30. Zamani, P, Rawat, D, Shiva-Kumar, P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 2015;131(4):371–380; discussion 380.
Google Scholar | Crossref | Medline31. Senden, PJ, Sabelis, LW, Zonderland, ML, et al. Determinants of maximal exercise performance in chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2004;11(1):41–47.
Google Scholar | SAGE Journals32. Vidavalur, R, Penumathsa, SV, Thirunavukkarasu, M, Zhan, L, Krueger, W, Maulik, N. Sildenafil augments early protective transcriptional changes after ischemia in mouse myocardium. Gene. 2009;430(1-2):30–37.
Google Scholar | Crossref | Medline33. Khairallah, M, Khairallah, RJ, Young, ME, et al. Sildenafil and cardiomyocyte-specific cGMP signaling prevent cardiomyopathic changes associated with dystrophin deficiency. Proc Natl Acad Sci U S A. 2008;105(19):7028–7033.
Google Scholar | Crossref | Medline34. Jia, H, Guo, Z, Yao, Y. PDE5 inhibitor protects the mitochondrial function of hypoxic myocardial cells. Exp Ther Med. 2019;17(1):199–204.
Google Scholar | Medline35. Botha, P, MacGowan, GA, Dark, JH. Sildenafil citrate augments myocardial protection in heart transplantation. Transplantation. 2010;89(2):169–177.
Google Scholar | Crossref | Medline36. Phan, TT, Abozguia, K, Nallur Shivu, G, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54(5):402–409.
Google Scholar | Crossref | Medline37. Stanley, WC, Recchia, FA, Lopaschuk, GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–1129.
Google Scholar | Crossref | Medline | ISI38. Neubauer, S . The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140–1151.
Google Scholar | Crossref | Medline | ISI39. Nickel, A, Loffler, J, Maack, C. Myocardial energetics in heart failure. Basic Res Cardiol. 2013;108(4):358.
Google Scholar | Crossref | Medline40. Sellevold, OF, Jynge, P, Aarstad, K. High performance liquid chromatography: a rapid isocratic method for determination of creatine compounds and adenine nucleotides in myocardial tissue. J Mol Cell Cardiol. 1986;18(5):517–527.
Google Scholar | Crossref | Medline41. Ayala, JE, Bracy, DP, Julien, BM, Rottman, JN, Fueger, PT, Wasserman, DH. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes. 2007;56(4):1025–1033.
Google Scholar | Crossref | Medline42. Ramirez, CE, Nian, H, Yu, C, et al. Treatment with sildenafil improves insulin sensitivity in prediabetes: a randomized, controlled trial. J Clin Endocrinol Metab. 2015;100(12):4533–4540.
Google Scholar | Crossref | Medline43. Frigolet, ME, Thomas, G, Beard, K, Lu, H, Liu, L, Fantus, IG. The bradykinin-cGMP-PKG pathway augments insulin sensitivity via upregulation of MAPK phosphatase-5 and inhibition of JNK. Am J Physiol Endocrinol Metab. 2017;313(3):E321–E334.
Google Scholar | Crossref | Medline44. Hargreaves, M, Spriet, LL. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018;8(8):a029744.
Google Scholar | Crossref | Medline45. Sharma, K, Kass, DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif