Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R., Ali, M. M. U. (2019). Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci, 6, 11.
https://doi.org/10.3389/fmolb.2019.00011 Google Scholar |
Crossref |
Medline Ahmed, S., Kwatra, M., Ranjan Panda, S., Murty, U. S. N., Naidu, V. G. M. (2021). Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of Parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun, 91, 142–158.
https://doi.org/10.1016/j.bbi.2020.09.017 Google Scholar |
Crossref |
Medline Aimé, P., Karuppagounder, S. S., Rao, A., Chen, Y., Burke, R. E., Ratan, R. R., Greene, L. A. (2020). The drug adaptaquin blocks ATF4/CHOP-dependent pro-death Trib3 induction and protects in cellular and mouse models of Parkinson’s disease. Neurobiol Dis, 136, 104725.
https://doi.org/10.1016/j.nbd.2019.104725 Google Scholar |
Crossref |
Medline Alvarez-Erviti, L., Seow, Y., Schapira, A. H. V., Rodriguez-Oroz, M. C., Obeso, J. A., Cooper, J. M. (2013). Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis, 4(3), e545–e545.
Google Scholar |
Crossref |
Medline Anding, A. L., Wang, C., Chang, T.-K., Sliter, D. A., Powers, C. M., Hofmann, K., Youle, R. J., Baehrecke, E. H. (2018). Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance. Curr Biol, 28(2), 287–295.e6.
https://doi.org/10.1016/j.cub.2017.11.064 Google Scholar |
Crossref |
Medline Archer, S. L. (2013). Mitochondrial dynamics—Mitochondrial fission and fusion in human diseases. N Engl J Med, 369(23), 2236–2251.
https://doi.org/10.1056/NEJMra1215233 Google Scholar |
Crossref |
Medline Arias, E., Koga, H., Diaz, A., Mocholi, E., Patel, B., Cuervo, A. M. (2015). Lysosomal mTORC2/PHLPP1/akt regulate chaperone-mediated autophagy. Mol Cell, 59(2), 270–284.
https://doi.org/10.1016/j.molcel.2015.05.030 Google Scholar |
Crossref |
Medline Atakpa, P., Thillaiappan, N. B., Mataragka, S., Prole, D. L., Taylor, C. W. (2018). IP3 receptors preferentially associate with ER-lysosome contact sites and selectively deliver Ca2+ to lysosomes. Cell Rep, 25(11), 3180–3193.e7.
https://doi.org/10.1016/j.celrep.2018.11.064 Google Scholar |
Crossref |
Medline Basso, V., Marchesan, E., Peggion, C., Chakraborty, J., von Stockum, S., Giacomello, M., Ottolini, D., Debattisti, V., Caicci, F., Tasca, E., Pegoraro, V., Angelini, C., Antonini, A., Bertoli, A., Brini, M., Ziviani, E. (2018). Regulation of ER-mitochondria contacts by parkin via Mfn2. Pharmacol Res, 138, 43–56.
https://doi.org/10.1016/j.phrs.2018.09.006 Google Scholar |
Crossref |
Medline Belal, C., Ameli, N. J., El Kommos, A., Bezalel, S., Al'Khafaji, A. M., Mughal, M. R., Mattson, M. P., Kyriazis, G. A., Tyrberg, B., Chan, S. L. (2012). The homocysteine-inducible endoplasmic reticulum (ER) stress protein herp counteracts mutant α-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum Mol Genet, 21(5), 963–977.
https://doi.org/10.1093/hmg/ddr502 Google Scholar |
Crossref |
Medline Bellucci, A., Navarria, L., Zaltieri, M., Falarti, E., Bodei, S., Sigala, S., Battistin, L., Spillantini, M., Missale, C., Spano, P. (2011). Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem, 116(4), 588–605.
https://doi.org/10.1111/j.1471-4159.2010.07143.x Google Scholar |
Crossref |
Medline Bernhard, W., Rouiller, C. (1956). Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J Biophys Biochem Cytol, 2(4), 73–78.
https://doi.org/10.1083/jcb.2.4.73 Google Scholar |
Crossref |
Medline Berthet, A., Margolis, E. B., Zhang, J., Hsieh, I., Zhang, J., Hnasko, T. S., Ahmad, J., Edwards, R. H., Sesaki, H., Huang, E. J., Nakamura, K. (2014). Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci, 34(43), 14304–14317.
https://doi.org/10.1523/JNEUROSCI.0930-14.2014 Google Scholar |
Crossref |
Medline Bi, D., Yao, L., Lin, Z., Chi, L., Li, H., Xu, H., Du, X., Liu, Q., Hu, Z., Lu, J., Xu, X. (2021). Unsaturated mannuronate oligosaccharide ameliorates β‐amyloid pathology through autophagy in Alzheimer’s disease cell models. Carbohydr Polym, 251, 117124.
https://doi.org/10.1016/j.carbpol.2020.117124 Google Scholar |
Crossref |
Medline Bittremieux, M., Parys, J. B., Pinton, P., Bultynck, G. (2016). ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca2+ signaling. Biochim Biophys Acta Mol Cell Res, 1863(6), 1364–1378.
https://doi.org/10.1016/j.bbamcr.2016.01.002 Google Scholar |
Crossref Bockaert, J., Marin, P. (2015). mTOR in brain physiology and pathologies. Physiol Rev, 95(4), 1157–1187.
https://doi.org/10.1152/physrev.00038.2014 Google Scholar |
Crossref |
Medline Boddapati, S. V., Tongcharoensirikul, P., Hanson, R. N., D'Souza, G. G. M., Torchilin, V. P., Weissig, V. (2005). Mitochondriotropic liposomes. J Liposome Res, 15(1–2), 49–58.
https://doi.org/10.1081/LPR-64958 Google Scholar |
Crossref |
Medline Bourdenx, M., Daniel, J., Genin, E., Soria, F. N., Blanchard-Desce, M., Bezard, E., Dehay, B. (2016). Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy, 12(3), 472–483.
https://doi.org/10.1080/15548627.2015.1136769 Google Scholar |
Crossref |
Medline Boveris, A., Oshino, N., Chance, B. (1972). The cellular production of hydrogen peroxide. Biochem J, 128(3), 617–630.
https://doi.org/10.1042/bj1280617 Google Scholar Braschi, E., Zunino, R., McBride, H. M. (2009). MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep, 10(7), 748–754.
https://doi.org/10.1038/embor.2009.86 Google Scholar |
Crossref |
Medline |
ISI Braschi, E., Goyon, V., Zunino, R., Mohanty, A., Xu, L., McBride, H. M. (2010). Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol, 20(14), 1310–1315.
https://doi.org/10.1016/j.cub.2010.05.066 Google Scholar |
Crossref |
Medline Brenza, T. M., Ghaisas, S., Ramirez, J. E. V., Harischandra, D., Anantharam, V., Kalyanaraman, B., Kanthasamy, A. G., Narasimhan, B. (2017). Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomed Nanotechnol Biol Med, 13(3), 809–820.
https://doi.org/10.1016/j.nano.2016.10.004 Google Scholar |
Crossref |
Medline Butler, M. R., Ma, H., Yang, F., Belcher, J., Le, Y.-Z., Mikoshiba, K., Biel, M., Michalakis, S., Iuso, A., Križaj, D., Ding, X.-Q. (2017). Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency. J Biol Chem, 292(27), 11189–11205.
https://doi.org/10.1074/jbc.M117.782326 Google Scholar |
Crossref |
Medline Calì, T., Ottolini, D., Negro, A., Brini, M. (2012). α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem, 287(22), 17914–17929.
https://doi.org/10.1074/jbc.M111.302794 Google Scholar |
Crossref |
Medline Calì, T., Ottolini, D., Negro, A., Brini, M. (2013). Enhanced Parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim Biophys Acta Mol Basis Dis, 1832(4), 495–508.
Google Scholar |
Crossref Calvo-Rodríguez, M., García-Durillo, M., Villalobos, C., Núñez, L. (2016). In vitro aging promotes endoplasmic reticulum (ER)-mitochondria Ca2+ cross talk and loss of store-operated Ca2+ entry (SOCE) in rat hippocampal neurons. Biochim Biophys Acta, 1863(11), 2637–2649.
https://doi.org/10.1016/j.bbamcr.2016.08.001 Google Scholar |
Crossref |
Medline Camões, F., Bonekamp, N. A., Delille, H. K., Schrader, M. (2009). Organelle dynamics and dysfunction: A closer link between peroxisomes and mitochondria. J Inherit Metabol Dis, 32(2), 163–180.
https://doi.org/10.1007/s10545-008-1018-3 Google Scholar |
Crossref |
Medline Castro, I. G., Richards, D. M., Metz, J., Costello, J. L., Passmore, J. B., Schrader, T. A., Gouveia, A., Ribeiro, D., Schrader, M. (2018). A role for mitochondrial rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic, 19(3), 229–242.
https://doi.org/10.1111/tra.12549 Google Scholar |
Crossref |
Medline Che, L., Yang, C.-L., Chen, Y., Wu, Z.-L., Du, Z.-B., Wu, J.-S., Gan, C.-L., Yan, S.-P., Huang, J., Guo, N.-J., Lin, Y.-C., Lin, Z.-N. (2021). Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity. Chemosphere, 262, 127878.
https://doi.org/10.1016/j.chemosphere.2020.127878 Google Scholar |
Crossref |
Medline Chemaly, E. R., Troncone, L., Lebeche, D. (2018). SERCA control of cell death and survival. Cell Calcium, 69, 46–61.
https://doi.org/10.1016/j.ceca.2017.07.001 Google Scholar |
Crossref |
Medline Chen, N., Guo, Z., Luo, Z., Zheng, F., Shao, W., Yu, G., Cai, P., Wu, S., Li, H. (2021). Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage. Environ Pollut, 272, 116413.
https://doi.org/10.1016/j.envpol.2020.116413 Google Scholar |
Crossref |
Medline Chen, T., Zhu, J., Wang, Y.-H., Hang, C.-H. (2019). ROS-mediated mitochondrial dysfunction and ER stress contribute to compression-induced neuronal injury. Neuroscience, 416, 268–280.
https://doi.org/10.1016/j.neuroscience.2019.08.007 Google Scholar |
Crossref |
Medline Cherubini, M., Lopez-Molina, L., Gines, S. (2020). Mitochondrial fission in Huntington’s disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and reactive oxygen species (ROS) homeostasis. Neurobiol Dis, 136, 104741.
https://doi.org/10.1016/j.nbd.2020.104741 Google Scholar |
Crossref |
Medline Chidambaram, S. B., Ray, B., Bhat, A. (2020). Chapter 5—Mitochondria-targeted drug delivery in neurodegenerative diseases. In: Shegokar, R. (Ed.), Delivery of drugs (pp. 97–117). Elsevier.
https://doi.org/10.1016/B978-0-12-817776-1.00005-5.
Google Scholar |
Crossref Choi, S., Quan, X., Bang, S., Yoo, H., Kim, J., Park, J., Park, K.-S., Chung, J. (2017). Mitochondrial calcium uniporter in drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J Biol Chem, 292(35), 14473–14485.
https://doi.org/10.1074/jbc.M116.765578 Google Scholar |
Crossref |
Medline Cipolla, C. M., Lodhi, I. J. (2017). Peroxisomal dysfunction in age-related diseases. Trends Endocrinol Metab, 28(4), 297–308.
https://doi.org/10.1016/j.tem.2016.12.003 Google Scholar |
Crossref |
Medline Clarke, J.-P., Mearow, K. (2016). Autophagy inhibition in endogenous and nutrient-deprived conditions reduces dorsal root ganglia neuron survival and neurite growth in vitro. J Neurosci Res, 94(7), 653–670.
https://doi.org/10.1002/jnr.23733 Google Scholar |
Crossref |
Medline Coblentz, J., St Croix, C., Kiselyov, K. (2014). Loss of TRPML1 promotes production of reactive oxygen species: Is oxidative damage a factor in mucolipidosis type IV? Biochem J, 457(2), 361–368.
https://doi.org/10.1042/BJ20130647 Google Scholar |
Crossref |
Medline Cohen, Y., Klug, Y. A., Dimitrov, L., Erez, Z., Chuartzman, S. G., Elinger, D., Yofe, I., Soliman, K., Gärtner, J., Thoms, S., Schekman, R., Elbaz-Alon, Y., Zalckvar, E., Schuldiner, M. (2014). Peroxisomes are juxtaposed to strategic sites on mitochondria. Mol BioSyst, 10(7), 1742–1748.
https://doi.org/10.1039/c4mb00001c Google Scholar |
Crossref |
Medline Costello, J. L., Castro, I. G., Hacker, C., Schrader, T. A., Metz, J., Zeuschner, D., Azadi, A. S., Godinho, L. F., Costina, V., Findeisen, P., Manner, A., Islinger, M., Schrader, M. (2017). ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol, 216(2), 331–342.
https://doi.org/10.1083/jcb.201607055 Google Scholar |
Crossref |
Medline Covill‐Cooke, C., Toncheva, V. S., Drew, J., Birsa, N., López‐Doménech, G., Kittler, J. T. (2020). Peroxisomal fission is modulated by the mitochondrial Rho-GTPases, Miro1 and Miro2. EMBO Rep, 21(2), e49865.
https://doi.org/10.15252/embr.201949865 Google Scholar |
Crossref |
Medline Csordás, G., Thomas, A. P., Hajnóczky, G. (1999). Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J, 18(1), 96–108.
https://doi.org/10.1093/emboj/18.1.96 Google Scholar |
Crossref |
Medline
留言 (0)