The Role of Pyroptosis in Ischemic and Reperfusion Injury of the Heart

1. Mozaffarian, D, Benjamin, EJ, Go, AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
Google Scholar | Crossref | Medline | ISI2. Zhao, ZQ, Corvera, JS, Halkos, ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–H588.
Google Scholar | Crossref | Medline | ISI3. Yang, XM, Proctor, JB, Cui, L, Krieg, T, Downey, JM, Cohen, MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44(5):1103–1110.
Google Scholar | Crossref4. Cohen, MV, Downey, JM. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res Cardiol. 2017;112(6):64.
Google Scholar | Crossref | Medline5. Hausenloy, DJ, Kharbanda, RK, Møller, UK; et al. CONDI-2/ERIC-PPCI Investigators . Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet. 2019;394(10207):1415–1424.
Google Scholar | Crossref | Medline6. Heusch, G . Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773–789. doi:10.1038/s41569-020-0403-y
Google Scholar | Crossref | Medline7. Kloner, RA, Brown, DA, Csete, M, et al. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol. 2017;14(11):679–693.
Google Scholar | Crossref | Medline8. Wider, J, Przyklenk, K. Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovasc Diagn Ther. 2014;4(5):383–396.
Google Scholar | Medline9. Cohen, MV, Downey, JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol. 2015;172(8):1913–1932.
Google Scholar | Crossref | Medline | ISI10. Ovize, M, Baxter, GF, Di Lisa, F, et al. Postconditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res. 2010;87(3):406–423.
Google Scholar | Crossref | Medline | ISI11. Yang, XM, Liu, Y, Cui, L, et al. Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther. 2013;18(3):251–262.
Google Scholar | SAGE Journals | ISI12. Audia, JP, Yang, XM, Crockett, ES, et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol. 2018;113(5):32.
Google Scholar | Crossref | Medline13. Martinon, F, Burns, K, Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Molecular Cell. 2002;10(2):417–426.
Google Scholar | Crossref | Medline | ISI14. Toldo, S, Mezzaroma, E, Van Tassell, BW, et al. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol. 2013;98(3):734–745.
Google Scholar | Crossref | Medline15. Wang, Q, Wu, J, Zeng, Y, et al. Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta. 2020;510:62–72.
Google Scholar | Crossref | Medline16. Cookson, B, Brennan, M. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113-114.
Google Scholar | Crossref | Medline | ISI17. Fink, S, Cookson, B. Caspase 1 dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812-1825.
Google Scholar | Crossref | Medline18. Ding, J, Wang, K, Liu, W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–116.
Google Scholar | Crossref | Medline19. Fantuzzi, G, Dinarello, CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol. 1999;19(1):1–11.
Google Scholar | Crossref | Medline20. Monack, DM, Detweiler, CS, Falkow, S. Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cell Microbiol. 2001;3(12):825-837.
Google Scholar | Crossref | Medline21. Jorgensen, I, Miao, EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130-142.
Google Scholar | Crossref | Medline22. Miao, EA, Rajan, JV, Aderem, A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011; 243(1):206–214.
Google Scholar | Crossref | Medline | ISI23. Swanson, KV, Deng, M, Ting, JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489.
Google Scholar | Crossref | Medline24. Sebastian-Valverde, M, Pasinetti, GM. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells. 2020;9(6):E1552.
Google Scholar | Crossref | Medline25. Poznyak, AV, Melnichenko, AA, Wetzker, R, Gerasimova, EV, Orekhov, AN. NLPR3 inflammasomes and their significance for atherosclerosis. Biomedicines. 2020;8(7):E205.
Google Scholar | Crossref | Medline26. Silvis, MJM, Demkes, EJ, Fiolet, ATL, et al. Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction. J Cardiovasc Transl Res. 2020;14(1):23–34. doi:10.1007/s12265-020-10049-w
Google Scholar | Crossref | Medline27. Yue, RC, Lu, SZ, Luo, Y, et al. Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci. 2019;233:116631.
Google Scholar | Crossref | Medline28. Lu, B, Kwan, K, Levine, YA, et al. α7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol Med. 2014;20(1):350–358.
Google Scholar | Crossref | Medline29. Minutoli, L, Puzzolo, D, Rinaldi, M, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev. 2016;2016:2183026.
Google Scholar | Crossref | Medline30. Zhou, R, Yazdi, AS, Menu, P, Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221-225.
Google Scholar | Crossref | Medline | ISI31. He, WT, Wan, H, Hu, L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285-1298.
Google Scholar | Crossref | Medline | ISI32. Shi, J, Zhao, Y, Wang, K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665.
Google Scholar | Crossref | Medline33. Shi, J, Gao, W, Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–254.
Google Scholar | Crossref | Medline34. Lou, Y, Wang, S, Qu, J, et al. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis. Int J Clin Exp Pathol. 2018;11(7):3222–3235.
Google Scholar | Medline35. Lei, Q, Yi, T, Chen, C. NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit. 2018;24:6044-6052.
Google Scholar | Crossref | Medline36. Bøtker, HE, Hausenloy, D, Andreadou, I, et al. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol. 2018;113(5):39.
Google Scholar | Crossref | Medline37. Qiu, Z, Lei, S, Zhao, B, et al. NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev. 2017;2017:9743280.
Google Scholar | Crossref | Medline38. Lin, J, Lin, H, Ma, C, Dong, F, Hu, Y, Li, H. MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FoxO3. Med Sci Monit. 2019;25:8733–8743.
Google Scholar | Crossref | Medline39. Bian, Y, Li, X, Pang, P, et al. Kanglexin, a novel anthraquinone compound, protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis. Acta Pharmacol Sin. 2020;41(3):319–326.
Google Scholar | Crossref | Medline40. Dai, Y, Wang, S, Chang, S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020;142:65–79.
Google Scholar | Crossref | Medline41. Wei, X, Peng, H, Deng, M, Feng, Z, Peng, C, Yang, D. MiR-703 protects against hypoxia/reoxygenation-induced cardiomyocyte injury via inhibiting the NLRP3/caspase-1-mediated pyroptosis. J Bioenerg Biomembr. 2020;52(3):155–164.
Google Scholar | Crossref | Medline42. Zhou, Y, Li, KS, Liu, L, Li, SL. MicroRNA-132 promotes oxidative stress induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia-reperfusion injury. Int J Mol Med. 2020;45(6):1942–1950.
Google Scholar | Medline43. Mastrocola, R, Penna, C, Tullio, F, et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev. 2016;2016:5271251.
Google Scholar | Crossref | Medline44. Marchetti, C, Toldo, S, Chojnacki, J, et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J Cardiovasc Pharmacol. 2015;66(1):1–8.
Google Scholar | Crossref | Medline45. Toldo, S, Marchetti, C, Mauro, AG, et al. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol. 2016;209:215–220.
Google Scholar | Crossref | Medline46. Kawaguchi, M, Takahashi, M, Hata, T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594–604.
Google Scholar | Crossref | Medline | ISI47. Heidt, T, Courties, G, Dutta, P, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res. 2014;115(2):284–295.
Google Scholar | Crossref | Medline48. Cohen, MV, Yang, XM, Downey, JM. All caspase-1-dependent myocardial infarction occurs in the first 10 minutes of reperfusion. Circulation. 2019;140(1):A12336.
Google Scholar49. Do Carmo, H, Arjun, S, Petrucci, O, Yellon, DM, Davidson, SM

留言 (0)

沒有登入
gif