Islet Function in the Pathogenesis of Cystic Fibrosis-Related Diabetes Mellitus

1. Kelly, J. Environmental scan of cystic fibrosis research worldwide. J Cyst Fibros. 2017;16:367-370.
Google Scholar | Crossref | Medline2. Li, C, Naren, AP. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr Biol (Camb). 2010;2:161-177.
Google Scholar | Crossref | Medline3. Anderson, MP, Gregory, RJ, Thompson, S, et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 12 1991;253:202-205.
Google Scholar | Crossref | Medline | ISI4. Kelly, A, Moran, A. Update on cystic fibrosis-related diabetes. J Cyst Fibros. 2013;12:318-331.
Google Scholar | Crossref | Medline5. Moran, A, Dunitz, J, Nathan, B, Saeed, A, Holme, B, Thomas, W. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care. 2009;32:1626-1631.
Google Scholar | Crossref | Medline | ISI6. Alves, C, Della-Manna, T, Albuquerque, CTM. Cystic fibrosis-related diabetes: an update on pathophysiology, diagnosis, and treatment. J Pediatr Endocrinol Metab. 28 2020;33:835-843.
Google Scholar | Crossref | Medline7. Löhr, M, Goertchen, P, Nizze, H, et al. Cystic fibrosis associated islet changes may provide a basis for diabetes. An immunocytochemical and morphometrical study. Virchows Arch A Pathol Anat Histopathol. 1989;414:179-185.
Google Scholar | Crossref | Medline8. Wooldridge, JL, Szczesniak, RD, Fenchel, MC, Elder, DA. Insulin secretion abnormalities in exocrine pancreatic sufficient cystic fibrosis patients. J Cyst Fibros. 2015;14:792-797.
Google Scholar | Crossref | Medline9. Iannucci, A, Mukai, K, Johnson, D, Burke, B. Endocrine pancreas in cystic fibrosis: an immunohistochemical study. Hum Pathol. 1984;15:278-284.
Google Scholar | Crossref | Medline10. Hart, NJ, Aramandla, R, Poffenberger, G, et al. Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight. 2018;3:e98240.
Google Scholar | Crossref11. Edlund, A, Esguerra, JL, Wendt, A, Flodström-Tullberg, M, Eliasson, L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med. 2014;12:87.
Google Scholar | Crossref | Medline12. Guo, JH, Chen, H, Ruan, YC, et al. Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR. Nat Commun. 2014;5:4420.
Google Scholar | Crossref | Medline13. Ntimbane, T, Mailhot, G, Spahis, S, et al. CFTR silencing in pancreatic β-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab. 2016;310:E200-E212.
Google Scholar | Crossref | Medline14. Stalvey, MS, Muller, C, Schatz, DA, et al. Cystic fibrosis transmembrane conductance regulator deficiency exacerbates islet cell dysfunction after beta-cell injury. Diabetes. 2006;55:1939-1945.
Google Scholar | Crossref | Medline15. Michl, RK, Tabori, H, Hentschel, J, Beck, JF, Mainz, JG. Clinical approach to the diagnosis and treatment of cystic fibrosis and CFTR-related disorders. Expert Rev Respir Med. 2016;10:1177-1186.
Google Scholar | Crossref | Medline16. Kelsey, R, Manderson Koivula, FN, McClenaghan, NH, Kelly, C. Cystic fibrosis-related diabetes: pathophysiology and therapeutic challenges. Clin Med Insights Endocrinol Diabetes. 2019;12:1179551419851770.
Google Scholar | SAGE Journals17. Perano, SJ, Couper, JJ, Horowitz, M, et al. Pancreatic enzyme supplementation improves the incretin hormone response and attenuates postprandial glycemia in adolescents with cystic fibrosis: a randomized crossover trial. J Clin Endocrinol Metab. 2014;99:2486-2493.
Google Scholar | Crossref | Medline18. Moran, A, Diem, P, Klein, DJ, Levitt, MD, Robertson, RP. Pancreatic endocrine function in cystic fibrosis. J Pediatr. 1991;118:715-723.
Google Scholar | Crossref | Medline | ISI19. Moran, A, Doherty, L, Wang, X, Thomas, W. Abnormal glucose metabolism in cystic fibrosis. J Pediatr. 1998;133:10-17.
Google Scholar | Crossref | Medline20. Aitken, ML, Szkudlinska, MA, Boyko, EJ, Ng, D, Utzschneider, KM, Kahn, SE. Impaired counterregulatory responses to hypoglycaemia following oral glucose in adults with cystic fibrosis. Diabetologia. 2020;63:1055-1065.
Google Scholar | Crossref | Medline21. Kilberg, MJ, Harris, C, Sheikh, S, et al. Hypoglycemia and islet dysfunction following oral glucose tolerance testing in pancreatic-insufficient cystic fibrosis. J Clin Endocrinol Metab. 2020;105:3179-3189.
Google Scholar | Crossref22. Sheikh, S, Gudipaty, L, De Leon, DD, et al. Reduced β-cell secretory capacity in pancreatic-insufficient, but not pancreatic-sufficient, cystic fibrosis despite normal glucose tolerance. Diabetes. 2017;66:134-144.
Google Scholar | Crossref | Medline23. Nyirjesy, SC, Sheikh, S, Hadjiliadis, D, et al. β-Cell secretory defects are present in pancreatic insufficient cystic fibrosis with 1-hour oral glucose tolerance test glucose ⩾155 mg/dL. Pediatr Diabetes. 2018;19:1173-1182.
Google Scholar | Crossref | Medline24. Lanng, S, Thorsteinsson, B, Røder, ME, et al. Pancreas and gut hormone responses to oral glucose and intravenous glucagon in cystic fibrosis patients with normal, impaired, and diabetic glucose tolerance. Acta Endocrinol. 1993;128:207-214.
Google Scholar | Crossref | Medline25. Hinds, A, Sheehan, AG, Machida, H, Parsons, HG. Postprandial hyperglycemia and pancreatic function in cystic fibrosis patients. Diabetes Res. 1991;18:69-78.
Google Scholar | Medline26. Hardin, DS, Ahn, C, Rice, J, Rice, M, Rosenblatt, R. Elevated gluconeogenesis and lack of suppression by insulin contribute to cystic fibrosis-related diabetes. J Investig Med. 2008;56:567-573.
Google Scholar | Crossref | Medline27. Claus, TH, Pilkis, SJ. Regulation by insulin of gluconeogenesis in isolated rat hepatocytes. Biochim Biophys Acta. 1976;421:246-262.
Google Scholar | Crossref | Medline28. Kozawa, J, Okita, K, Iwahashi, H, Yamagata, K, Imagawa, A, Shimomura, I. Early postprandial glucagon surge affects postprandial glucose levels in obese and non-obese patients with type 2 diabetes. Endocr J. 2013;60:813-818.
Google Scholar | Crossref | Medline | ISI29. Quesada, I, Tuduri, E, Ripoll, C, Nadal, A. Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol. 2008;199:5-19.
Google Scholar | Crossref | Medline | ISI30. Armaghanian, N, Hetherington, J, Parameswaran, V, et al. Hypoglycemia in cystic fibrosis during an extended oral glucose tolerance test. Pediatr Pulmonol. 2020;55:3391-3399.
Google Scholar | Crossref | Medline31. Ahmed, N, Corey, M, Forstner, G, et al. Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas. Gut. 2003;52:1159-1164.
Google Scholar | Crossref | Medline32. Adler, AI, Shine, BS, Chamnan, P, Haworth, CS, Bilton, D. Genetic determinants and epidemiology of cystic fibrosis-related diabetes: results from a British cohort of children and adults. Diabetes Care. 2008;31:1789-1794.
Google Scholar | Crossref | Medline | ISI33. Norris, AW, Ode, KL, Merjaneh, L, et al. Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. J Endocrinol. Published online February 1, 2019. doi:10.1530/joe-18-0468
Google Scholar | Crossref34. Moran, A, Hardin, D, Rodman, D, et al. Diagnosis, screening and management of cystic fibrosis related diabetes mellitus: a consensus conference report. Diabetes Res Clin Pract. 1999;45:61-73.
Google Scholar | Crossref | Medline35. Bogdani, M, Blackman, SM, Ridaura, C, Bellocq, JP, Powers, AC, Aguilar-Bryan, L. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep. 2017;7:17231.
Google Scholar | Crossref | Medline36. Hillman, M, Eriksson, L, Mared, L, Helgesson, K, Landin-Olsson, M. Reduced levels of active GLP-1 in patients with cystic fibrosis with and without diabetes mellitus. J Cyst Fibros. 2012;11:144-149.
Google Scholar | Crossref | Medline37. Brereton, MF, Iberl, M, Shimomura, K, et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun. 2014;5:4639.
Google Scholar | Crossref | Medline | ISI38. Di Fulvio, M, Bogdani, M, Velasco, M, et al. Heterogeneous expression of CFTR in insulin-secreting β-cells of the normal human islet. PLoS One. 2020;15:e0242749.
Google Scholar | Crossref | Medline39. Sun, X, Yi, Y, Xie, W, et al. CFTR influences beta cell function and insulin secretion through non-cell autonomous exocrine-derived factors. Endocrinology. 2017;158:3325-3338.
Google Scholar | Crossref | Medline40. Boom, A, Lybaert, P, Pollet, JF, et al. Expression and localization of cystic fibrosis transmembrane conductance regulator in the rat endocrine pancreas. Endocrine. 2007;32:197-205.
Google Scholar | Crossref | Medline41. White, MG, Maheshwari, RR, Anderson, SJ, et al. In situ analysis reveals that CFTR is expressed in only a small minority of β-cells in normal adult human pancreas. J Clin Endocrinol Metab. 2020;105:1366-1374.
Google Scholar | Crossref42. Segerstolpe, Å, Palasantza, A, Eliasson, P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 2016;24:593-607.
Google Scholar | Crossref | Medline43. Arrojo, EDR, Roy, B, MacDonald, PE. Molecular and functional profiling of human islets: from heterogeneity to human phenotypes. Diabetologia. 2020;63:2095-2101.
Google Scholar | Crossref | Medline44. Joglekar, MV, Dong, CX, Wong, WKM, Dalgaard, LT, Hardikar, AA. A bird’s eye view of the dynamics of pancreatic β-cell heterogeneity. Acta Physiol. 2021:e13664.
Google Scholar | Crossref | Medline45. Rorsman, P, Ashcroft, FM. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev. 2018;98:117-214.
Google Scholar | Crossref | Medline46. Ashcroft, FM, Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148:1160-1171.
Google Scholar | Crossref | Medline47. Kinard, TA, Satin, LS. An ATP-sensitive Cl- channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes. 1995;44:1461-1466.
Google Scholar | Crossref | Medline48. Di Fulvio, M, Aguilar-Bryan, L. Chloride transporters and channels in β-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans. 2019;47:1843-1855.
Google Scholar | Crossref | Medline49. Cherubini, E, Gaiarsa, JL, Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 1991;14:515-519.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif