1.
Breast Cancer Facts & Figures 2019-2020 . American Cancer Society. Atlanta: American Cancer Society, Inc.; 2019.
Google Scholar2.
Azamjah, N, Soltan-Zadeh, Y, Zayeri, F. Global trend of breast cancer mortality rate: a 25-year study. Asian Pac J Cancer Prev. 2019;20(7):2015-20. doi:
10.31557/APJCP.2019.20.7.2015.
Google Scholar |
Crossref |
Medline3.
Desantis, C, Ma, J, Gaudet, M, Newman, LA, Miller, KD, Goding Sauer, A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69:438-51. doi:
10.3322/caac.21583.
Google Scholar |
Crossref4.
Slubowski, T, Slubowska, M, Wojciechowski, A. Diagnostic techniques in breast cancer detection. part II: Physical and biopsy methods. Ginekologia Polska. 2007;78:479-83.
Google Scholar5.
Rocha, R, Pinto, R, Tavares, D, Gonçalves, CFA. Step-by-step of ultrasound-guided core-needle biopsy of the breast: review and technique. Radiologia Brasileira. 2013;46:234-41. doi:
10.1590/S0100-39842013000400010.
Google Scholar |
Crossref6.
Fattahi, AS, Tavassoli, A, Kalantari, MR, Noorshafiee, S, Rahmani, M. Evaluation of the value of core needle biopsy in the diagnosis of a breast mass. Arch Breast Cancer. 2016;3(2):56-61. doi:
10.19187/abc.20163256-61.
Google Scholar |
Crossref7.
Dancel, R, Schnobrich, D, Puri, N, Franco-Sadud, R, Cho, J, Grikis, L, et al. Recommendations on the use of ultrasound guidance for adult thoracentesis: a position statement of the society of hospital medicine. J Hosp Med. 2018;13(2):126-35. doi:
10.12788/jhm.2940.
Google Scholar |
Crossref8.
Cho, J, Jensen, TP, Reierson, K, Mathews, BK, Bhagra, A, Franco-Sadud, R, et al. Recommendations on the use of ultrasound guidance for adult abdominal paracentesis: a position statement of the society of hospital medicine. J Hosp Med. 2019;14:E7-15. doi:
10.12788/jhm.3095.
Google Scholar |
Crossref9.
Huang, J, Triedman, JK, Vasilyev, NV, Suematsu, Y, Cleveland, RO, Dupont, PE. Imaging artifacts of medical instruments in ultrasound-guided interventions. J Ultrasound Med. 2007;26(10):1303-22. doi:
10.7863/jum.2007.26.10.1303.
Google Scholar |
Crossref10.
Franz, AM, Haidegger, T, Birkfellner, W, Cleary, K, Peters, TM, Maier-Hein, L. Electromagnetic tracking in medicine–a review of technology, validation, and applications. IEEE Trans Med Imaging. 2014;33(8):1702-25. doi:
10.1109/TMI.2014.2321777.
Google Scholar |
Crossref |
Medline11.
Lasso, A, Heffter, T, Rankin, A, Pinter, C, Ungi, T, Fichtinger, G. PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng. 2014;61(10):2527-37. doi:
10.1109/TBME.2014.2322864.
Google Scholar |
Crossref |
Medline12.
Xia, W, West, SJ, Finlay, MC, Mari, J-M, Ourselin, S, David, AL, et al. Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe. Sci Rep. 2017;7(1):3674. doi:
10.1038/s41598-017-03886-4.
Google Scholar |
Crossref13.
Agarwal, N, Yadav, AK, Gupta, A, Orlando, MF. Real-time needle tip localization in 2D ultrasound images using Kalman filter. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2019, pp. 1008-12.
Google Scholar |
Crossref14.
Groves, LA, VanBerlo, B, Peters, TM, Chen, ECS, et al. Deep learning approach for automatic out-of-plane needle localisation for semi-automatic ultrasound probe calibration. Healthc Technol Lett. 2019;6(6):204-9. doi:
10.1049/htl.2019.0075.
Google Scholar |
Crossref |
Medline15.
Wijata, A, Ranosz, Ż, Galińska, M, Juszczyk, J, Czajkowska, J. Detection and tracking of the biopsy needle using ultrasound images. In: Gzik, M, Tkacz, E, Paszenda, Z, Piętka, E, eds. Innovations in Biomedical Engineering. Cham: Springer International Publishing; 2018, pp. 33-41.
Google Scholar |
Crossref16.
Hatt, C, Ng, G, Parthasarathy, V. Enhanced needle localization in ultrasound using beam steering and learning-based segmentation. Comput Med Imaging Graph. 2015;41:46-54. doi:
10.1016/j.compmedimag.2014.06.016.
Google Scholar |
Crossref |
Medline17.
Lee, JY, Islam, M, Woh, JR, Washeem, TSM, Ngoh, LYC, Wong, WK, et al. Ultrasound needle segmentation and trajectory prediction using excitation network. Int J Comput Assist Radiol Surg. 2020;15:437-43. doi:
10.1007/s11548-019-02113-x.
Google Scholar |
Crossref18.
Mwikirize, C, Nosher, J, Hacihaliloglu, I. Convolution neural networks for real-time needle detection and localization in 2D ultrasound. Int J Comput Assist Radiol Surg. 2018;13(5):647-57. doi:
10.1007/s11548-018-1721-y.
Google Scholar |
Crossref19.
Yang, H, Shan, C, Bouwman, A, Kolen, AF, de With, PHN. Efficient and robust instrument segmentation in 3D ultrasound using patch-of-interest-fusenet with hybrid loss. Med Image Anal. 2021;67:101842. doi:
10.1016/j.media.2020.101842.
Google Scholar |
Crossref |
Medline20.
Arif, M, Moelker, A, van Walsum, T. Automatic needle detection and real-time bi-planar needle visualization during 3D ultrasound scanning of the liver. Med Image Anal. 2019;53:104-10. doi:
10.1016/j.media.2019.02.002.
Google Scholar |
Crossref |
Medline21.
Pourtaherian, A, Ghazvinian Zanjani, F, Zinger, S, Mihajlovic, N, Ng, GC, Korsten, HHM, et al. Robust and semantic needle detection in 3D ultrasound using orthogonal-plane convolutional neural networks. Int J Comput Assist Radiol Surg. 2018;13(9):1321-33. doi:
10.1007/s11548-018-1798-3.
Google Scholar |
Crossref |
Medline22.
Zhao, Y, Shen, Y, Bernard, A, Cachard, C, Liebgott, H. Evaluation and comparison of current biopsy needle localization and tracking methods using 3D ultrasound. Ultrasonics. 2017;73:206-20. doi:
10.1016/j.ultras.2016.09.006.
Google Scholar |
Crossref |
Medline23.
Czajkowska, J, Pycinski, B, Pietka, E. HoG feature based detection of tissue deformations in ultrasound data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 6326-29.
Google Scholar |
Crossref24.
Zhao, Y, Bernard, A, Cachard, C, Liebgott, H. Biopsy needle localization and tracking using ROI-RK method. Abstr Appl Anal. 2014;2014:1-7. doi:
10.1155/2014/973147.
Google Scholar |
Crossref25.
SonoSkills, BV . Free ultrasound library offered to you by SonoSkills and Hitachi Medical Systems Europe. Available from:
https://www.ultrasoundcases.info/cases/breast-and-axilla/ (accessed June 2020).
Google Scholar26.
Kirti, Virmani, J, Agarwal, R. Characterization of breast tumors using selected laws’ mask texture features. In: 2017 Fourth International Conference on Image Information Processing (ICIIP), 2017, pp. 1-6.
Google Scholar27.
Pyciński, B, Juszczyk, J, Wijata, A, Galinska, M, Czajkowska, J, Pietka, E. Image guided core needle biopsy of the breast. In: Pietka, E, Badura, P, Kawa, J, Wieclawek, W, eds. Information Technology in Biomedicine, Advances in Intelligent Systems and Computing, volume 762. Cham: Springer International Publishing; 2019, pp. 160-71.
Google Scholar |
Crossref28.
Wijata, A, Andrzejewski, J, Pyciński, B. A convolutional neural network for an automatic biopsy needle detection and segmentation on ultrasound images. Mendeley Data, 2021. doi:
10.17632/zk6scwv52p.
Google Scholar |
Crossref29.
Toft, PA. The Radon transform – theory and implementation. Technical University of Denmark, 1996.
Google Scholar
留言 (0)