1.
Van den Berg, V, Vroegindewey, M, Kardys, I, et al. Anti-oxidized LDL antibodies and coronary artery disease: a systematic review. Antioxidants (Basel). 2019;8(10):484. doi:10.3390/antiox8100484
Google Scholar |
Crossref2.
Afroz, R, Cao, Y, Rostam, M, et al. Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: implications for lipoprotein binding and atherosclerosis. Pharmacol Ther. 2018;187:88–97. doi:10.1016/j.pharmthera.2018.02.005
Google Scholar |
Crossref |
Medline3.
Xu, H, Jiang, J, Chen, W, Li, W, Chen, Z. Vascular macrophages in atherosclerosis. J Immunol Res. 2019;2019. doi:10.1155/2019/4354786
Google Scholar |
Crossref4.
Chistiakov, D, Melnichenko, A, Myasoedova, V, Grechko, AV, Orekhov, AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 2017;95(11):1153–1165. doi:10.1007/s00109-017-1575-8
Google Scholar |
Crossref |
Medline5.
Jaminon, A, Reesink, K, Kroon, A, Schurgers, L. The role of vascular smooth muscle cells in arterial remodeling: focus on calcification-related processes. Int J Mol Sci. 2019;20(22):5694. doi:10.3390/ijms20225694
Google Scholar |
Crossref6.
Machado-Oliveira, G, Ramos, C, Marques, A, Vieira, OV. Cell senescence, multiple organelle dysfunction and atherosclerosis. Cells. 2020;9(10):2146. doi:10.3390/cells9102146
Google Scholar |
Crossref7.
Wegierski, T, Kuznicki, J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium. 2018;74:102–111. doi:10.1016/j.ceca.2018.07.001
Google Scholar |
Crossref |
Medline8.
Cheng, J, Wen, J, Wang, N, Wang, C, Xu, Q, Yang, Y. Ion channels and vascular diseases. Arterioscler Thromb Vasc Biol. 2019;39(5):e146–e156. doi:10.1161/atvbaha.119.312004
Google Scholar |
Crossref |
Medline9.
Okada, Y, Okada, T, Sato-Numata, K, et al. Cell volume-activated and volume-correlated anion channels in mammalian cells: their biophysical, molecular, and pharmacological properties. Pharmacol Rev. 2019;71(1):49–88. doi:10.1124/pr.118.015917
Google Scholar |
Crossref |
Medline10.
Liu, Y, Zhang, H, Men, H, et al. Volume-regulated Cl current: contributions of distinct Cl channels and localized Ca signals. Am J Physiol Cell Physiol. 2019;317(3):C466–C480. doi:10.1152/ajpcell.00507.2018
Google Scholar |
Crossref |
Medline11.
Jentsch, T, Pusch, M. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev. 2018;98(3):1493–1590. doi:10.1152/physrev.00047.2017
Google Scholar |
Crossref |
Medline12.
Ganapathi, S, Wei, S, Zaremba, A, Lamb, FS, Shears, SB. Functional regulation of ClC-3 in the migration of vascular smooth muscle cells. Hypertension (Dallas, Tex: 1979). 2013;61(1):174–179. doi:10.1161/hypertensionaha.112.194209
Google Scholar |
Crossref |
Medline13.
McCarty, M, Iloki-Assanga, S, Lujan, L, DiNicolantonio, JJ. Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes. Med Hypotheses. 2019;123:125–129. doi:10.1016/j.mehy.2019.01.012
Google Scholar |
Crossref |
Medline14.
Hong, L, Xie, Z, Du, Y, et al. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis. 2011;216(1):59–66. doi:10.1016/j.atherosclerosis.2011.01.035
Google Scholar |
Crossref |
Medline15.
Tao, J, Liu, C, Yang, J, et al. ClC-3 deficiency prevents atherosclerotic lesion development in ApoE-/- mice. J Mol Cell Cardiol. 2015;87:237–247. doi:10.1016/j.yjmcc.2015.09.002
Google Scholar |
Crossref |
Medline16.
Kawasaki, M, Suzuki, M, Uchida, S, Sasaki, S, Marumo, F. Stable and functional expression of the CIC-3 chloride channel in somatic cell lines. Neuron. 1995;14(6):1285–1291. doi:10.1016/0896-6273(95)90275-9
Google Scholar |
Crossref |
Medline17.
Yamazaki, J, Duan, D, Janiak, R, Kuenzli, K, Horowitz, B, Hume, JR. Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J Physiol. 1998;507(Pt 3):729–736. doi:10.1111/j.1469-7793.1998.729bs.x
Google Scholar |
Crossref |
Medline18.
Jentsch, T, Stein, V, Weinreich, F, Zdebik, AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82(2):503–568. doi:10.1152/physrev.00029.2001
Google Scholar |
Crossref |
Medline |
ISI19.
Schmidt-Rose, T, Jentsch, T. Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci U S A. 1997;94(14):7633–7638. doi:10.1073/pnas.94.14.7633
Google Scholar |
Crossref |
Medline20.
Fahlke, C, Yu, H, Beck, C, Rhodes, TH, George, AL. Pore-forming segments in voltage-gated chloride channels. Nature. 1997;390(6659):529–532. doi:10.1038/37391
Google Scholar |
Crossref |
Medline21.
Robinson, N, Huang, P, Kaetzel, M, Lamb, FS, Nelson, DJ. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current. J Physiol. 2004;556(Pt 2):353–368. doi:10.1113/jphysiol.2003.058032
Google Scholar |
Crossref |
Medline22.
Wang, XG, Tao, J, Ma, MM, Tang, YB, Zhou, JG, Guan, YY. Tyrosine 284 phosphorylation is required for ClC-3 chloride channel activation in vascular smooth muscle cells. Cardiovasc Res. 2013;98(3):469–478. doi:10.1093/cvr/cvt063
Google Scholar |
Crossref |
Medline23.
Ma, M, Lin, C, Liu, C, et al. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol. 2016;173(3):529–544. doi:10.1111/bph.13385
Google Scholar |
Crossref |
Medline24.
Delgado, M, Cabernard, C. Mechanical regulation of cell size, fate, and behavior during asymmetric cell division. Curr Opin Cell Biol. 2020;67:9–16. doi:10.1016/j.ceb.2020.07.002
Google Scholar |
Crossref |
Medline25.
Perez Gonzalez, N, Tao, J, Rochman, N, et al. Cell tension and mechanical regulation of cell volume. Mol Biol Cell. 2018;29(21):0. doi:10.1091/mbc.E18-04-0213
Google Scholar |
Crossref |
Medline26.
Riemma, G, Laganà, A, Schiattarella, A, et al. Ion channels in the pathogenesis of endometriosis: a cutting-edge point of view. Int J Mol Sci. 2020;21(3). doi:10.3390/ijms21031114
Google Scholar |
Crossref27.
Hoffmann, E, Schettino, T, Marshall, W. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A, Mol Integ Physiol. 2007;148(1):29–43. doi:10.1016/j.cbpa.2006.11.023
Google Scholar |
Crossref |
Medline28.
Duran, C, Thompson, C, Xiao, Q, Hartzell, HC. Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol. 2010;72:95–121. doi:10.1146/annurev-physiol-021909-135811
Google Scholar |
Crossref |
Medline29.
Liu, J, Zhang, F, Li, L, et al. ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase. Apoptosis. 2013;18(10):1262–1273. doi:10.1007/s10495-013-0881-z
Google Scholar |
Crossref |
Medline30.
Du, S, Yang, L. ClC-3 chloride channel modulates the proliferation and migration of osteosarcoma cells via AKT/GSK3β signaling pathway. Int J Clin Exp Pathol. 2015;8(2):1622–1630.
Google Scholar |
Medline31.
Yamamoto, S, Ichishima, K, Ehara, T. Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells. Biomed Res (Tokyo, Japan). 2008;29(6):307–315. doi:10.2220/biomedres.29.307
Google Scholar |
Crossref |
Medline32.
Cheng, L, Li, Y, Chen, X, Li, XL, Chen, XS, Du, YH. ClC-3 deficiency impairs the neovascularization capacity of early endothelial progenitor cells by decreasing CXCR4/JAK-2 signalling. Can J Cardiol. 2019;35(11):1546–1556. doi:10.1016/j.cjca.2019.08.009
Google Scholar |
Crossref |
Medline33.
Zhou, F, Huang, Y, Tian, T, Li, XY, Tang, YB. Knockdown of chloride channel-3 inhibits breast cancer growth in vitro and in vivo. J Breast Cancer. 2018;21(2):103–111. doi:10.4048/jbc.2018.21.2.103
Google Scholar |
Crossref |
Medline34.
Zhang, B, Deng, F, Zhou, C, Fang, S. ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting beclin1/Vps34-mediated autophagy. Human Cell. 2020;33(4):1046–1055. doi:10.1007/s13577-020-00406-x
Google Scholar |
Crossref |
Medline35.
Mu, H, Mu, L, Gao, J. Suppression of CLC-3 reduces the proliferation, invasion and migration of colorectal cancer through Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 2020;533(4):1240–1246. doi:10.1016/j.bbrc.2020.09.125
Google Scholar |
Crossref |
Medline36.
Miller, F, Filali, M, Huss, G, et al. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res. 2007;101(7):663–671. doi:10.1161/circresaha.107.151076
Google Scholar |
Crossref |
Medline37.
Duan, D, Cowley, S, Horowitz, B, Hume, JR. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume. J Gen Physiol. 1999;113(1):57–70. doi:10.1085/jgp.113.1.57
Google Scholar |
Crossref |
Medline38.
Qin, C, He, B, Dai, W, et al. The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein ClC-3. Biomaterials. 2014;35(22):5908–5920. doi:10.1016/j.biomaterials.2014.03.077
Google Scholar |
Crossref |
Medline39.
Zhang, X, Zhang, J, Chen, Z, et al. Difference of pain vulnerability in adult and juvenile rodents: the role of SIRT1-mediated ClC-3 trafficking in sensory neurons. Pain. 2021;162(6):1882–1896. doi:10.1097/j.pain.0000000000002176
Google Scholar |
Crossref |
Medline40.
Chen, J, Wang, F, Lu, Y, et al. CLC-3 and SOX2 regulate the cell cycle in DU145 cells. Oncol Lett 2020;20(6):372. doi:10.3892/ol.2020.12235
Google Scholar |
Crossref |
Medline41.
Gu, Z, Wang, L, Yao, X, et al. ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death Dis. 2020;11:898. doi:10.1038/s41419-020-03107-3
Google Scholar |
Crossref |
Medline42.
Yang, H, Huang, L, Zeng, D, et al. Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor-κB pathway. Hypertension (Dallas, Tex: 1979). 2012;60(5):1287–1293. doi:10.1161/hypertensionaha.112.198648
Google Scholar |
Crossref |
Medline43.
Fujimoto, M, Kito, H, Kajikuri, J, Ohya, S. Transcriptional repression of human epidermal growth factor receptor 2 by ClC-3 Cl /H transporter inhibition in human breast cancer cells. Cancer Sci. 2018;109(9):2781–2791. doi:10.1111/cas.13715
Google Scholar |
Crossref |
Medline44.
Xiang, N, Liu, J, Liao, Y, et al. Abrogating ClC-3 inhibits LPS-induced inflammation via blocking the TLR4/NF-κB pathway. Sci Rep. 2016;6:27583. doi:10.1038/srep27583
Google Scholar |
Crossref |
Medline45.
Ma, M, Jin, C, Huang, X, et al. Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin. 2019;40(12):1532–1543. doi:10.1038/s41401-019-0229-5
Google Scholar |
Crossref |
Medline46.
Chu, X, Filali, M, Stanic, B, et al. A critical role for chloride channel-3 (CIC-3) in smooth muscle cell activation and neointima formation. Arterioscler Thromb Vasc Biol. 2011;31(2):345–351. doi:10.1161/atvbaha.110.217604
Google Scholar |
Crossref |
Medline47.
Ahmad, P, Alvi, S, Iqbal, D, Khan, MS. Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci. 2020;254:117756. doi:10.1016/j.lfs.2020.117756
Google Scholar |
Crossref |
Medline48.
Zhang, T, Chen, J, Tang, X, Luo, Q, Xu, D, Yu, B. Interaction between adipocytes and high-density lipoprotein: new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis. 2019;18(1):223. doi:10.1186/s12944-019-1170-9
Google Scholar |
Crossref |
Medline49.
Hu, H, Li, D, Fan, L, et al. Involvement of volume-sensitive Cl- channels in the proliferation of human subcutaneous pre-adipocytes. Clin Exp Pharmacol Physiol. 2010;37(1):29–34. doi:10.1111/j.1440-1681.2009.05223.x
留言 (0)