Palekar-Shanbhag P, Jog SV, Chogale MM, Gaikwad SS. Theranostics for cancer therapy. Curr Drug Deliv. 2013;10(3):357–62.
2.Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol. 2019;49:352–64 Available from: http://www.sciencedirect.com/science/article/pii/S177322471831219X.
3.Fang M, Peng C-W, Pang D-W, Li Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med. 2012;9(3):151–63 Available from: https://pubmed.ncbi.nlm.nih.gov/23691472.
CAS PubMed PubMed Central Google Scholar
4.Xie J, Zheng Y, Ying JY. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc. 2009;131(3):888–9. https://doi.org/10.1021/ja806804u.
CAS Article PubMed Google Scholar
5.Yang X, Zhu S, Dou Y, Zhuo Y, Luo Y, Feng Y. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta. 2014;122:36–42 Available from: http://www.sciencedirect.com/science/article/pii/S0039914013009909.
6.Li Z-Y, Wu Y-T, Tseng W-L. UV-Light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: application to ratiometric fluorescent sensing of nucleic acids. ACS Appl Mater Interfaces. 2015;7(42):23708–16. https://doi.org/10.1021/acsami.5b07766.
CAS Article PubMed Google Scholar
7.Shellaiah M, Simon T, Thirumalaivasan N, Sun KW, Ko F-H, Wu S-P. Cysteamine-capped gold-copper nanoclusters for fluorometric determination and imaging of chromium(VI) and dopamine [Internet]. Vol. 186, Mikrochimica acta. Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan; 2019. p. 788. Available from: http://europepmc.org/abstract/MED/31732881
8.Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale. 2012;4(14):4155–60. https://doi.org/10.1039/C2NR30219E.
CAS Article PubMed Google Scholar
9.Triulzi RC, Micic M, Giordani S, Serry M, Chiou W-A, Leblanc RM. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer–gold quantum dot complex. Chem Commun. 2006;48:5068–70. https://doi.org/10.1039/B611278A.
10.Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T. Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc. 2010;132(1):16–7. https://doi.org/10.1021/ja907984r.
CAS Article PubMed Google Scholar
11.Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J Am Chem Soc. 2008;130(18):5883–5. https://doi.org/10.1021/ja801173r.
CAS Article PubMed Google Scholar
12.Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–413. https://doi.org/10.1021/acs.chemrev.5b00703.
CAS Article PubMed Google Scholar
13.So PTC, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng. 2000;2(1):399–429. https://doi.org/10.1146/annurev.bioeng.2.1.399.
CAS Article PubMed Google Scholar
14.Wu Z, Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010;10(7):2568–73. https://doi.org/10.1021/nl101225f.
CAS Article PubMed Google Scholar
15.Chang H-Y, Chang H-T, Hung Y-L, Hsiung T-M, Lin Y-W, Huang C-C. Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Adv. 2013;3(14):4588–97. https://doi.org/10.1039/C3RA23036H.
16.Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C. 2008;112(32):12168–76. https://doi.org/10.1021/jp800508d.
17.Zhao Y, Detering L, Sultan D, Cooper ML, You M, Cho S, et al. Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano. 2016;10(6):5959–70 Available from: http://europepmc.org/abstract/MED/27159079.
18.Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. 2007;25(10):1165–70.
19.Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Eng. 2011;50(14):3168–72.
20.Wang J-Y, Chen J, Yang J, Wang H, Shen X, Sun Y-M, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine. 2016;11:3475–85.
21.Ahsan SM, Rao CM, Ahmad MF. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Adv Exp Med Biol. 2018;1048:175–98.
22.Shang L, Nienhaus GU. Metal nanoclusters: Protein corona formation and implications for biological applications. Int J Biochem Cell Biol. 2016 Jun;75:175–9.
23.Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–86 Available from: http://www.sciencedirect.com/science/article/pii/S1369702113003878.
24.Yang L, Shang L, Nienhaus GU. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale. 2013;5(4):1537–43.
25.Shang L, Dörlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, et al. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale. 2011;3(5):2009–14. https://doi.org/10.1039/C0NR00947D.
CAS Article PubMed Google Scholar
26.Mutas M, Strelow C, Kipp T, Mews A. Specific binding and internalization: an investigation of fluorescent aptamer-gold nanoclusters and cells with fluorescence lifetime imaging microscopy. Nanoscale. 2018;10(43):20453–61. https://doi.org/10.1039/C8NR06639F.
CAS Article PubMed Google Scholar
27.Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1(38):5045–53. https://doi.org/10.1039/C3TB20784F.
CAS Article PubMed Google Scholar
28.Liang G, Ye D, Zhang X, Dong F, Chen H, Zhang S, et al. One-pot synthesis of Gd3+-functionalized gold nanoclusters for dual model (fluorescence/magnetic resonance) imaging. J Mater Chem B. 2013;1(29):3545–52. https://doi.org/10.1039/C3TB20440E.
CAS Article PubMed Google Scholar
29.Hu D-H, Sheng Z-H, Zhang P-F, Yang D-Z, Liu S-H, Gong P, et al. Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale. 2013;5(4):1624–8.
30.Lee S, Chen X. Dual-Modality Probes for in Vivo Molecular Imaging. Mol Imaging. 2009;8(2):7290.2009.00013. Available from: https://journals.sagepub.com/doi/abs/10.2310/7290.2009.00013
31.Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, et al. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. Biomaterials. 2014;35(37):9868–76 Available from: http://europepmc.org/abstract/MED/25224367.
32.Khandelia R, Bhandari S, Pan UN, Ghosh SS, Chattopadhyay A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small. 2015;11(33):4075–81. https://doi.org/10.1002/smll.201500216.
CAS Article PubMed Google Scholar
33.Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J. amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv Funct Mater. 2013;23(35):4324–31. https://doi.org/10.1002/adfm.201300411.
34.Vankayala R, Kuo C-L, Nuthalapati K, Chiang C-S, Hwang KC. Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-Light activated photodynamic therapy. Adv Funct Mater. 2015;25(37):5934–45. https://doi.org/10.1002/adfm.201502650.
35.Samani RK, Tavakoli MB, Maghsoudinia F, Motaghi H, Hejazi SH, Mehrgardi MA. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer. Eur J Pharm Sci. 2020;153:105487 Available from: http://www.sciencedirect.com/science/article/pii/S0928098720302761.
36.Zhang X, Chen M, Zhang Y, Hou Y, Wu Y, Yao M, et al. Monoclonal-antibody-templated gold nanoclusters for HER2 receptors targeted fluorescence imaging. ACS Appl Bio Mater. 2020;3(10):7061–6. https://doi.org/10.1021/acsabm.0c00905.
37.Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13(20):2563–78. https://doi.org/10.2217/nnm-2018-0180.
CAS Article PubMed Google Scholar
38.Zhou F, Feng B, Yu H, Wang D, Wang T, Liu J, et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics. 2016;6(5):679–87 Available from: https://pubmed.ncbi.nlm.nih.gov/27022415.
39.Kong Y, Chen J, Gao F, Brydson R, Johnson B, Heath G, et al. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale. 2013;5(3):1009–17. https://doi.org/10.1039/C2NR32760K.
CAS Article PubMed Google Scholar
40.Liang G, Jin X, Zhang S, Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. 2017;144:95–104 Available from: http://www.sciencedirect.com/science/article/pii/S0142961217305276.
41.Zhang P, Yang XX, Wang Y, Zhao NW, Xiong ZH, Huang CZ. Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale. 2014;6(4):2261–9. https://doi.org/10.1039/C3NR05269A.
CAS Article PubMed Google Scholar
42.Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15(34):1900968. https://doi.org/10.1002/smll.201900968.
留言 (0)