The Role of Gold Nanoclusters as Emerging Theranostic Agents for Cancer Management

1.

Palekar-Shanbhag P, Jog SV, Chogale MM, Gaikwad SS. Theranostics for cancer therapy. Curr Drug Deliv. 2013;10(3):357–62.

CAS  Article  Google Scholar 

2.

Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol. 2019;49:352–64 Available from: http://www.sciencedirect.com/science/article/pii/S177322471831219X.

CAS  Article  Google Scholar 

3.

Fang M, Peng C-W, Pang D-W, Li Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med. 2012;9(3):151–63 Available from: https://pubmed.ncbi.nlm.nih.gov/23691472.

CAS  PubMed  PubMed Central  Google Scholar 

4.

Xie J, Zheng Y, Ying JY. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc. 2009;131(3):888–9. https://doi.org/10.1021/ja806804u.

CAS  Article  PubMed  Google Scholar 

5.

Yang X, Zhu S, Dou Y, Zhuo Y, Luo Y, Feng Y. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta. 2014;122:36–42 Available from: http://www.sciencedirect.com/science/article/pii/S0039914013009909.

CAS  Article  Google Scholar 

6.

Li Z-Y, Wu Y-T, Tseng W-L. UV-Light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: application to ratiometric fluorescent sensing of nucleic acids. ACS Appl Mater Interfaces. 2015;7(42):23708–16. https://doi.org/10.1021/acsami.5b07766.

CAS  Article  PubMed  Google Scholar 

7.

Shellaiah M, Simon T, Thirumalaivasan N, Sun KW, Ko F-H, Wu S-P. Cysteamine-capped gold-copper nanoclusters for fluorometric determination and imaging of chromium(VI) and dopamine [Internet]. Vol. 186, Mikrochimica acta. Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan; 2019. p. 788. Available from: http://europepmc.org/abstract/MED/31732881

8.

Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale. 2012;4(14):4155–60. https://doi.org/10.1039/C2NR30219E.

CAS  Article  PubMed  Google Scholar 

9.

Triulzi RC, Micic M, Giordani S, Serry M, Chiou W-A, Leblanc RM. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer–gold quantum dot complex. Chem Commun. 2006;48:5068–70. https://doi.org/10.1039/B611278A.

Article  Google Scholar 

10.

Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T. Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc. 2010;132(1):16–7. https://doi.org/10.1021/ja907984r.

CAS  Article  PubMed  Google Scholar 

11.

Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J Am Chem Soc. 2008;130(18):5883–5. https://doi.org/10.1021/ja801173r.

CAS  Article  PubMed  Google Scholar 

12.

Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–413. https://doi.org/10.1021/acs.chemrev.5b00703.

CAS  Article  PubMed  Google Scholar 

13.

So PTC, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng. 2000;2(1):399–429. https://doi.org/10.1146/annurev.bioeng.2.1.399.

CAS  Article  PubMed  Google Scholar 

14.

Wu Z, Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010;10(7):2568–73. https://doi.org/10.1021/nl101225f.

CAS  Article  PubMed  Google Scholar 

15.

Chang H-Y, Chang H-T, Hung Y-L, Hsiung T-M, Lin Y-W, Huang C-C. Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Adv. 2013;3(14):4588–97. https://doi.org/10.1039/C3RA23036H.

CAS  Article  Google Scholar 

16.

Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C. 2008;112(32):12168–76. https://doi.org/10.1021/jp800508d.

CAS  Article  Google Scholar 

17.

Zhao Y, Detering L, Sultan D, Cooper ML, You M, Cho S, et al. Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano. 2016;10(6):5959–70 Available from: http://europepmc.org/abstract/MED/27159079.

CAS  Article  Google Scholar 

18.

Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. 2007;25(10):1165–70.

19.

Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Eng. 2011;50(14):3168–72.

20.

Wang J-Y, Chen J, Yang J, Wang H, Shen X, Sun Y-M, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine. 2016;11:3475–85.

CAS  Article  Google Scholar 

21.

Ahsan SM, Rao CM, Ahmad MF. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Adv Exp Med Biol. 2018;1048:175–98.

CAS  Article  Google Scholar 

22.

Shang L, Nienhaus GU. Metal nanoclusters: Protein corona formation and implications for biological applications. Int J Biochem Cell Biol. 2016 Jun;75:175–9.

CAS  Article  Google Scholar 

23.

Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–86 Available from: http://www.sciencedirect.com/science/article/pii/S1369702113003878.

CAS  Article  Google Scholar 

24.

Yang L, Shang L, Nienhaus GU. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale. 2013;5(4):1537–43.

CAS  Article  Google Scholar 

25.

Shang L, Dörlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, et al. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale. 2011;3(5):2009–14. https://doi.org/10.1039/C0NR00947D.

CAS  Article  PubMed  Google Scholar 

26.

Mutas M, Strelow C, Kipp T, Mews A. Specific binding and internalization: an investigation of fluorescent aptamer-gold nanoclusters and cells with fluorescence lifetime imaging microscopy. Nanoscale. 2018;10(43):20453–61. https://doi.org/10.1039/C8NR06639F.

CAS  Article  PubMed  Google Scholar 

27.

Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1(38):5045–53. https://doi.org/10.1039/C3TB20784F.

CAS  Article  PubMed  Google Scholar 

28.

Liang G, Ye D, Zhang X, Dong F, Chen H, Zhang S, et al. One-pot synthesis of Gd3+-functionalized gold nanoclusters for dual model (fluorescence/magnetic resonance) imaging. J Mater Chem B. 2013;1(29):3545–52. https://doi.org/10.1039/C3TB20440E.

CAS  Article  PubMed  Google Scholar 

29.

Hu D-H, Sheng Z-H, Zhang P-F, Yang D-Z, Liu S-H, Gong P, et al. Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale. 2013;5(4):1624–8.

CAS  Article  Google Scholar 

30.

Lee S, Chen X. Dual-Modality Probes for in Vivo Molecular Imaging. Mol Imaging. 2009;8(2):7290.2009.00013. Available from: https://journals.sagepub.com/doi/abs/10.2310/7290.2009.00013

31.

Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, et al. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. Biomaterials. 2014;35(37):9868–76 Available from: http://europepmc.org/abstract/MED/25224367.

CAS  Article  Google Scholar 

32.

Khandelia R, Bhandari S, Pan UN, Ghosh SS, Chattopadhyay A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small. 2015;11(33):4075–81. https://doi.org/10.1002/smll.201500216.

CAS  Article  PubMed  Google Scholar 

33.

Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J. amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv Funct Mater. 2013;23(35):4324–31. https://doi.org/10.1002/adfm.201300411.

CAS  Article  Google Scholar 

34.

Vankayala R, Kuo C-L, Nuthalapati K, Chiang C-S, Hwang KC. Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-Light activated photodynamic therapy. Adv Funct Mater. 2015;25(37):5934–45. https://doi.org/10.1002/adfm.201502650.

CAS  Article  Google Scholar 

35.

Samani RK, Tavakoli MB, Maghsoudinia F, Motaghi H, Hejazi SH, Mehrgardi MA. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer. Eur J Pharm Sci. 2020;153:105487 Available from: http://www.sciencedirect.com/science/article/pii/S0928098720302761.

CAS  Article  Google Scholar 

36.

Zhang X, Chen M, Zhang Y, Hou Y, Wu Y, Yao M, et al. Monoclonal-antibody-templated gold nanoclusters for HER2 receptors targeted fluorescence imaging. ACS Appl Bio Mater. 2020;3(10):7061–6. https://doi.org/10.1021/acsabm.0c00905.

CAS  Article  Google Scholar 

37.

Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. 2018;13(20):2563–78. https://doi.org/10.2217/nnm-2018-0180.

CAS  Article  PubMed  Google Scholar 

38.

Zhou F, Feng B, Yu H, Wang D, Wang T, Liu J, et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics. 2016;6(5):679–87 Available from: https://pubmed.ncbi.nlm.nih.gov/27022415.

CAS  Article  Google Scholar 

39.

Kong Y, Chen J, Gao F, Brydson R, Johnson B, Heath G, et al. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale. 2013;5(3):1009–17. https://doi.org/10.1039/C2NR32760K.

CAS  Article  PubMed  Google Scholar 

40.

Liang G, Jin X, Zhang S, Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. 2017;144:95–104 Available from: http://www.sciencedirect.com/science/article/pii/S0142961217305276.

CAS  Article  Google Scholar 

41.

Zhang P, Yang XX, Wang Y, Zhao NW, Xiong ZH, Huang CZ. Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale. 2014;6(4):2261–9. https://doi.org/10.1039/C3NR05269A.

CAS  Article  PubMed  Google Scholar 

42.

Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15(34):1900968. https://doi.org/10.1002/smll.201900968.

CAS  Article 

留言 (0)

沒有登入
gif