Digital twins and AI transforming healthcare systems through innovation and data-driven decision making

Rathore MM, Shah SA, Shukla D, Bentafat E, Bakiras S. The role of ai, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access. 2021;9:32030–52.

Article  Google Scholar 

Habchi Y, Himeur Y, Kheddar H, Boukabou A, Atalla S, Chouchane A, Ouamane A, Mansoor W. Ai in thyroid cancer diagnosis: Techniques, trends, and future directions. Systems. 2023;11(10):519.

Article  Google Scholar 

Benbelkacem S, Ykhlef F, Bouchaffra D, Oulefki A, Hitachi R, Benarab H, Yahiaoui S, Zenati-Henda N, Taright S, Vrtumor: Integrating ai-based segmentation with virtual reality for precise tumor analysis. In: Advances in medical imaging and machine learning. Springer, 2024.

Oulefki A, Kheddar H, Amira A, Kurugollu F, Himeur Y, Innovative ai strategies for enhancing smart building operations through digital twins: A survey. Available at SSRN 5015571, 2024.

Grieves M, Vickers J, Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary perspectives on complex systems: New findings and approaches, 2017;85–113.

McCourt C, Exploring the intersection of the medical metaverse and healthcare ethics: future considerations and caveats. Glob Health J. 2024.

Kamel Boulos MN, Zhang P. Digital twins: from personalised medicine to precision public health. J Personalized Med. 2021;11(8):745.

Article  MATH  Google Scholar 

Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T. Digital twins for multiple sclerosis. Front Immunol. 2021;12: 669811.

Article  Google Scholar 

Das C, Mumu AA, Ali MF, Sarker SK, Muyeen S, Das SK, Das P, Hasan MM, Tasneem Z, Islam MM, et al. Toward iort collaborative digital twin technology enabled future surgical sector: technical innovations, opportunities and challenges. IEEE Access. 2022;10:129079–104.

Article  Google Scholar 

Bjelland Ø, Rasheed B, Schaathun HG, Pedersen MD, Steinert M, Hellevik AI, Bye RT. Toward a digital twin for arthroscopic knee surgery: a systematic review. IEEE Access. 2022;10:45029–52.

Article  Google Scholar 

Lepper AG, Buck CM, Veer M, Huberts W, Vosse FN, Dekker LR. From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. J R Soc Interface. 2022;19(194):20220317.

Article  Google Scholar 

Walter W, Haferlach C, Nadarajah N, Schmidts I, Kühn C, Kern W, Haferlach T. How artificial intelligence might disrupt diagnostics in hematology in the near future. Oncogene. 2021;40(25):4271–80.

Article  Google Scholar 

Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D, Grieve SM, McEwan A, Yang JYH, Qian P, et al. The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. NPJ digital medicine. 2022;5(1):126.

Article  Google Scholar 

Wu C, Lorenzo G, Hormuth DA, Lima EA, Slavkova KP, DiCarlo JC, Virostko J, Phillips CM, Patt D, Chung C et al, Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophys Rev. 2022;3:2.

Kim K, Yang H, Lee J, Lee WG. Metaverse wearables for immersive digital healthcare: a review. Advanced Science. 2023;10(31):2303234.

Article  MATH  Google Scholar 

Turab M, Jamil S. A comprehensive survey of digital twins in healthcare in the era of metaverse. BioMedInformatics. 2023;3(3):563–84.

Article  MATH  Google Scholar 

Guillevin R, Naudin M, Fayolle P, Giraud C, Le Guillou X, Thomas C, Herpe G, Miranville A, Fernandez-Maloigne C, Pellerin L, et al. Diagnostic and therapeutic issues in glioma using imaging data: The challenge of numerical twinning. J Clin Med. 2023;12(24):7706.

Article  Google Scholar 

Falkowski P, Osiak T, Wilk J, Prokopiuk N, Leczkowski B, Pilat Z, Rzymkowski C. Study on the applicability of digital twins for home remote motor rehabilitation. Sensors. 2023;23(2):911.

Article  Google Scholar 

Meijer C, Uh H-W, El Bouhaddani S. Digital twins in healthcare: Methodological challenges and opportunities. Journal of Personalized Medicine. 2023;13(10):1522.

Article  MATH  Google Scholar 

Shaikh TA, Rasool T, Verma P, Machine intelligence and medical cyber-physical system architectures for smart healthcare: Taxonomy, challenges, opportunities, and possible solutions. Art Intell Med. 2023;102692.

Shumba A-T, Montanaro T, Sergi I, Bramanti A, Ciccarelli M, Rispoli A, Carrizzo A, De Vittorio M, Patrono L. Wearable technologies and ai at the far edge for chronic heart failure prevention and management: A systematic review and prospects. Sensors. 2023;23(15):6896.

Article  Google Scholar 

Dihan MS, Akash AI, Tasneem Z, Das P, Das SK, Islam MR, Islam MM, Badal FR, Ali MF, Ahmed M et al, Digital twin: Data exploration, architecture, implementation and future. Heliyon 2024.

Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical ai. Nat Med. 2022;28(9):1773–84.

Article  Google Scholar 

Anthwal A, Uniyal A, Gairolla J, Singh R, Gehlot A, Abbas M, Akram SV, Industry 4.0 technologies adoption for digital transition in drug discovery and development: A review. J Ind Inform Integr. 2024;100562.

Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024;19(1):33–42.

Article  Google Scholar 

Rudnicka Z, Proniewska K, Perkins M, Pregowska A. Cardiac healthcare digital twins supported by artificial intelligence-based algorithms and extended reality—a systematic review. Electronics. 2024;13(5):866.

Article  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE et al, The prisma 2020 statement: an updated guideline for reporting systematic reviews. Bmj 2021;372.

Onaji I, Tiwari D, Soulatiantork P, Song B, Tiwari A. Digital twin in manufacturing: conceptual framework and case studies. Int J Comput Integr Manuf. 2022;35(8):831–58.

Article  MATH  Google Scholar 

Erol T, Mendi AF, Doğan D, The digital twin revolution in healthcare. In: 2020 4th International symposium on multidisciplinary studies and innovative technologies (ISMSIT), IEEE, 2020. p. 1–7.

Sun T, He X, Li Z. Digital twin in healthcare: Recent updates and challenges. Digital Health. 2023;9:20552076221149652.

Article  MATH  Google Scholar 

Maddikunta PKR, Pham Q-V, Prabadevi B, Deepa N, Dev K, Gadekallu TR, Liyanage M.: Industry 5.0: A survey on enabling technologies and potential applications. J Ind Inform Inegration, (2022);26:100257.

Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical ai. Nat Med. 2022;28(9):1773–84.

Article  Google Scholar 

Mihai S, Yaqoob M, Hung DV, Davis W, Towakel P, Raza M, Karamanoglu M, Barn B, Shetve D, Prasad RV, et al. Digital twins: A survey on enabling technologies, challenges, trends and future prospects. IEEE Communications Surveys & Tutorials. 2022;24(4):2255–91.

Article  Google Scholar 

Huynh-The T, Pham Q-V, Pham X-Q, Nguyen TT, Han Z, Kim D-S. Artificial intelligence for the metaverse: A survey. Eng Appl Artif Intell. 2023;117: 105581.

Article  MATH  Google Scholar 

Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware iot healthcare systems. IEEE Internet Things J. 2021;8(23):16749–57.

Article  Google Scholar 

Wang B, Hu SJ, Sun L, Freiheit T. Intelligent welding system technologies: State-of-the-art review and perspectives. J Manuf Syst. 2020;56:373–91.

Article  MATH  Google Scholar 

Xia M, Shao H, Williams D, Lu S, Shu L, Silva CW. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliability Engineering & System Safety. 2021;215: 107938.

Article  Google Scholar 

Hu M, Zhong Y, Xie S, Lv H, Lv Z. Fuzzy system based medical image processing for brain disease prediction. Front Neurosci. 2021;215, 107938.

Kamel Boulos MN, Zhang P. Digital twins: from personalised medicine to precision public health. Journal of personalized medicine. 2021;11(8):745.

Article  MATH  Google Scholar 

Chengoden R, Victor N, Huynh-The T, Yenduri G, Jhaveri RH, Alazab M, Bhattacharya S, Hegde P, Maddikunta PKR, Gadekallu TR. Metaverse for healthcare: a survey on potential applications, challenges and future directions. IEEE Access. 2023;11:12765–95.

Article  Google Scholar 

De Benedictis, A., Mazzocca, N., Somma, A., Strigaro, C.: Digital twins in healthcare: an architectural proposal and its application in a social distancing case study. IEEE Journal of Biomedical and Health Informatics (2022)

Viceconti M, De Vos M, Mellone S, Geris L, Position paper from the digital twins in healthcare to the virtual human twin: a moon-shot project for digital health research. IEEE J Biomed Health Inform. 2023.

Voas J, Mell P, Piroumian V. Considerations for digital twin technology and emerging standards. National Institute of Standards and Technology: Technical report; 2021.

MATH  Google Scholar 

Esquire L, Going Digital: The Future of Healthcare in Japan. 2024. https://langleyesquire.com/going-digital-the-future-of-healthcare-in-japan/. Accessed: 26 Dec 2024

Khan S, Arslan T, Ratnarajah T. Digital twin perspective of fourth industrial and healthcare revolution. Ieee Access. 2022;10:25732–54.

Article  MATH  Google Scholar 

Bai Y, Zhang Y, Zotova O, Pineo H, Siri J, Liang L, Luo X, Kwan M-P, Ji J, Jiang X et al, Healthy cities initiative in china: Progress, challenges, and the way forward. The Lancet Regional Health–Western Pacific, 2022;27.

Government of India: Sangam Portal. 2024. https://sangam.sancharsaathi.gov.in/. Accessed 26 Dec 2024

Ivanoff JY, An analysis of the national digital twin programme in the united kingdom. PhD thesis, Carleton University, 2023.

Wang Y, Chen S, Tian X, Lin Y, Han D, Yao P, Xu H, Wang Y, Zhao J. A multi-scale feature selection module based architecture for the diagnosis of alzheimer’s disease on [18f] fdg pet. Int J Med Informatics. 2024;191: 105551.

Article  Google Scholar 

Hussain I, Hossain MA, Park S-J, A healthcare digital twin for diagnosis of stroke. In: 2021 IEEE International conference on biomedical engineering, computer and information technology for health (BECITHCON), IEEE, 2021. p. 18–21.

Batch KE, Yue J, Darcovich A, Lupton K, Liu CC, Woodlock DP, El Amine MAK, Causa-Andrieu PI, Gazit L, Nguyen GH, et al. Developing a cancer digital twin: supervised metastases detection from consecutive structured radiology reports. Frontiers in artificial intelligence. 2022;5: 826402.

Article  Google Scholar 

Yuan X, Zhang J, Luo J, Chen J, Shi Z, Qin M .: An efficient digital twin assisted clustered federated learning algorithm for disease prediction. In: 2022 IEEE 95th Vehicular technology conference:(VTC2022-Spring), IEEE, 2022. pp. 1–6.

Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware iot healthcare systems. IEEE Internet Things J. 2021;8(23):16749–57.

Article  Google Scholar 

Kim J-K, Lee S-J, Hong S-H, Choi I-Y. Machine-learning-based digital twin system for predicting the progression of prostate cancer. Appl Sci. 2022;12(16):8156.

Article  MATH  Google Scholar 

Chakshu NK, Sazonov I, Nithiarasu P. Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis. Biomech Model Mechanobiol. 2021;20(2):449–65.

Article  MATH  Google Scholar 

Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware iot healthcare systems. IEEE Internet Things J. 2021;8(23):16749–57.

Article  Google Scholar 

Islam MN, Hasan M, Hossain MK, Alam MGR, Uddin MZ, Soylu A. Vision transformer and explainable transfer learning models for auto detection of kidney cyst, stone and tumor from ct-radiography. Sci Rep. 2022;12(1):1–14.

留言 (0)

沒有登入
gif