Validation of Particle and Heavy Ion Transport Code System (PHITS) in generating dose-voxel kernels for internal dosimetry calculations

Ponziani FR, et al. SIRT in 2025. Cardiovasc Intervent Radiol. 2022 Nov;45(11):1622-1633. https://doi.org/10.1007/s00270-022-03228-6

Bastiaannet R, Kappadath SC, Kunnen B, Braat AJA, Lam MGEH, De Jong HWAM. The physics of radioembolization. EJNMMI Phys. 2018 Dec;5(1):22. https://doi.org/10.1186/s40658-018-0221-z

Henry EC, Lopez B, Mahvash A, Thomas MA, Kappadath SC. Predicting the net administered activity in 90Y-radioembolization patients from post-procedure 90Y-SPECT/CT. Med Phys. 2023 Nov;50(11):7003-7015. https://doi.org/10.1002/mp.16540

Vente MAD, et al. Holmium-166 poly(L-lactic acid) microsphere radioembolisation of the liver: Technical aspects studied in a large animal model. Eur Radiol. 2010 Apr;20(4):862-869. https://doi.org/10.1007/s00330-009-1613-1.

Article  Google Scholar 

Tan HY, et al. Evaluation of therapeutic efficacy and imaging capabilities of 153Sm2O3-loaded polystyrene microspheres for intra-tumoural radionuclide therapy of liver cancer using Sprague-Dawley rat model. Pharmaceutics. 2023 Feb;15(2):536. https://doi.org/10.3390/pharmaceutics15020536.

Chan HW, et al. Radiometal-labeled chitosan microspheres as transarterial radioembolization agents against hepatocellular carcinoma. Gels. 2022 Mar;8(3):180. https://doi.org/10.3390/gels8030180.

De La Vega JC, et al. Radioembolization of hepatocellular carcinoma with built-in dosimetry: First in vivo results with uniformly-sized, biodegradable microspheres labeled with 188Re. Theranostics. 2019 Mar;9(3):868-883. https://doi.org/10.7150/thno.29381.

Article  Google Scholar 

Humbert DP, Nichols AL, Schwerer O. IAEA Nuclear Data Section: provision of atomic and nuclear databases for user applications. Appl Radiat Isot. 2004 Feb;60(2-4):311-316. https://doi.org/10.1016/j.apradiso.2003.11.034.

Pasciak AS, Bourgeois AC, Bradley YC. A microdosimetric analysis of absorbed dose to tumor as a function of number of microspheres per unit volume in 90Y radioembolization. J Nucl Med. 2016 Jul;57(7):1020-1026. https://doi.org/10.2967/jnumed.115.163444

Bolch WE, et al. MIRD Pamphlet No. 17: The dosimetry of nonuniform activity distributions - Radionuclide S values at the voxel level. J Nucl Med. 1999 Apr;40:11S-36S.

Kappadath SC. Effects of voxel size and iterative reconstruction parameters on the spatial resolution of SPECT/CT. J Appl Clin Med Phys. 2011 Sep;12(4):210-220. https://doi.org/10.1120/jacmp.v12i4.3459

Danieli R, et al. Technical note: Impact of dose voxel kernel (DVK) values on dosimetry estimates in 177Lu and 90Y radiopharmaceutical therapy (RPT) applications. Med Phys. 2024 Jan;51(1):522-532. https://doi.org/10.1002/mp.16729

Xin L, Zhuo W, Xie T. Development of a voxel S-value database for patient internal radiation dosimetry. Phys Med. 2023 Feb;106:102519. https://doi.org/10.1016/j.ejmp.2022.102519.

Lanconelli N, et al. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol. 2012 Jan;57(2):517-533. https://doi.org/10.1088/0031-9155/57/2/517.

Amato E, Minutoli F, Pacilio M, Campennì A, Baldari S. An analytical method for computing voxel S values for electrons and photons. Med Phys. 2012 Nov;39(11):6808-6817. https://doi.org/10.1118/1.4757912

Eckerman KF, Westfall RJ, Ryman JC, Cristy M. Availability of nuclear decay data in electronic form, including beta spectra not previously published. Health Phys. 1994 Oct;67(4):338-345. https://doi.org/10.1097/00004032-199410000-00004

Sato T, et al. Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. J Nucl Sci Technol. 2024 Jan;61(1):127-135. https://doi.org/10.1080/00223131.2023.2275736

Eckerman K, Endo A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008 Jun;38(3):9-10. https://doi.org/10.1016/j.icrp.2008.10.004

Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, U M, Nelson WR. The EGS5 code system. SLAC-R-730, 877459, Dec 2005. https://doi.org/10.2172/877459

PHITS. Particle and Heavy Ion Transport Code System User’s Manual Version 3.32 English Version. Japan Atomic Energy Agency, May 06, 2023.

Sato T, et al. Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. EJNMMI Phys. 2021 Dec;8(1):4. https://doi.org/10.1186/s40658-020-00350-7.

Henry EC, et al. Precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model. EJNMMI Phys. 2022 Mar;9(1):21. https://doi.org/10.1186/s40658-022-00447-1.

Pacilio M, et al. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations. Med Phys. 2009 May;36(5):1107-1115.

Gupta A, et al. Voxel-based dosimetry of iron oxide nanoparticle-conjugated 177Lu-labeled folic acid using SPECT/CT imaging of mice. Mol Pharm. 2019 Apr;16(4):1498-1506. https://doi.org/10.1021/acs.molpharmaceut.8b01125

Grisanti F, et al. 3D voxel-based dosimetry to predict contralateral hypertrophy and an adequate future liver remnant after lobar radioembolization. Eur J Nucl Med Mol Imaging. 2021 Sep;48(10):3048-3057. https://doi.org/10.1007/s00259-021-05272-9

Willowson KP, Eslick EM, Bailey DL. Individualised dosimetry and safety of SIRT for intrahepatic cholangiocarcinoma. EJNMMI Phys. 2021 Dec;8(1):65. https://doi.org/10.1186/s40658-021-00406-2.

Abbott EM, et al. The impact of radiobiologically informed dose prescription on the clinical benefit of 90Y SIRT in colorectal cancer patients. J Nucl Med. 2020 Nov;61(11):1658-1664. https://doi.org/10.2967/jnumed.119.233650

Mikell JK, Mahvash A, Siman W, Mourtada F, Kappadath SC. Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for 90Y microsphere selective internal radiation therapy. EJNMMI Phys. 2015 Dec;2(1):16. https://doi.org/10.1186/s40658-015-0119-y.

Sato T, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018 Jun;55(6):684-690. https://doi.org/10.1080/00223131.2017.1419890

Shiiba T, Kuga N, Kuroiwa Y, Sato T. Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS. Appl Radiat Isot. 2017 Oct;128:199-203. https://doi.org/10.1016/j.apradiso.2017.07.028.

Alregib AH, et al. Development and physicochemical characterization of a biodegradable microspheres formulation loaded with samarium-153 and doxorubicin for chemo-radioembolization of liver tumours. J Label Compd Radiopharm. 2023. https://doi.org/10.1002/jlcr.4046.

Article  MATH  Google Scholar 

Kappadath SC, Lopez BP, Salem R, Lam MGEH. Reassessment of the lung dose limits for radioembolization. Nucl Med Commun. 2021 Oct;42(10):1064-1075. https://doi.org/10.1097/MNM.0000000000001439

Chen G, Lu Z, Chen Y, Mok GSP. Voxel-S-value methods adapted to heterogeneous media for quantitative Y-90 microsphere radioembolization dosimetry. Z Med Phys. 2022 Feb. https://doi.org/10.1016/j.zemedi.2022.11.003.

Dieudonné A, et al. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: Comparison between dose kernel convolution and direct Monte Carlo methods. J Nucl Med. 2013 Feb;54(2):236-243. https://doi.org/10.2967/jnumed.112.105825

Götz T, Schmidkonz C, Lang EW, Maier A, Kuwert T, Ritt PR. A comparison of methods for adapting 177Lu dose-voxel-kernels to tissue inhomogeneities. Phys Med Biol. 2019 Dec;64(24):245011. https://doi.org/10.1088/1361-6560/ab5b81.

留言 (0)

沒有登入
gif