The potential role of RhoA/ROCK-inhibition on locomotor recovery after spinal cord injury: a systematic review of in-vivo studies

Tran AP, Warren PM, Silver J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 2022;387:319–36.

Article  PubMed  Google Scholar 

Safdarian M, Trinka E, Rahimi-Movaghar V, Thomschewski A, Aali A, Abady GG, et al. Global, regional, and national burden of spinal cord injury, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2023;22:1026–47.

Article  Google Scholar 

Kang Y, Ding H, Zhou H, Wei Z, Liu L, Pan D, et al. Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratol. 2018;6:3.

Google Scholar 

Kim HS, Lim KB, Kim J, Kang J, Lee H, Lee SW, et al. Epidemiology of spinal cord injury: changes to its cause amid aging population, a single center study. Ann Rehabil Med. 2021;45:7–15.

Article  PubMed  PubMed Central  Google Scholar 

Chang S, Cao Y. The ROCK inhibitor Y-27632 ameliorates blood-spinal cord barrier disruption by reducing tight junction protein degradation via the MYPT1-MLC2 pathway after spinal cord injury in rats. Brain Res. 2021;1773:147684.

Article  CAS  PubMed  Google Scholar 

Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol. 2021;343:113794.

Article  CAS  PubMed  Google Scholar 

Impellizzeri D, Mazzon E, Paterniti I, Esposito E, Cuzzocrea S. Effect of fasudil, a selective inhibitor of Rho kinase activity, in the secondary injury associated with the experimental model of spinal cord trauma. J Pharmacol Exp Ther. 2012;343:21–33.

Article  CAS  PubMed  Google Scholar 

Xiao WP, Ding LL, Min YJ, Yang HY, Yao HH, Sun J, et al. Electroacupuncture promoting axonal regeneration in spinal cord injury rats via suppression of Nogo/NgR and Rho/ROCK signaling pathway. Neuropsychiatric Dis Treat. 2019;15:3429–42.

Article  CAS  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group* t. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

Article  PubMed  Google Scholar 

Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:1–9.

Article  Google Scholar 

Hou X-L, Chen Y, Yin H, Duan W-G. Combination of fasudil and celecoxib promotes the recovery of injured spinal cord in rats better than celecoxib or fasudil alone. Neural Regen Res. 2015;10:1836–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Li H, Yao Y, Ren Y, Lin J, Hu J, et al. beta-Elemene enhances GAP-43 expression and neurite outgrowth by inhibiting RhoA kinase activation in rats with spinal cord injury. Neuroscience. 2018;383:12–21.

Article  CAS  PubMed  Google Scholar 

Wu BQ, Bi ZG, Qi Q. Inactivation of the Rho-ROCK signaling pathway to promote neurologic recovery after spinal cord injuries in rats. Chin Med J. 2013;126:3723–7.

Article  CAS  PubMed  Google Scholar 

Xu X, Li N, Zhu L, Zhou Y, Cheng H. Beneficial effects of local profound hypothermia and the possible mechanism after experimental spinal cord injury in rats. J Spinal Cord Med. 2016;39:220–8.

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Joshi HP, Kim KT, Kim YY, Yeo K, Choi H, et al. Combined treatment with fasudil and menthol improves functional recovery in rat spinal cord injury model. Biomedicines. 2020;8:31.

Article  Google Scholar 

Álvarez‐Pérez B, Homs J, Bosch‐Mola M, Puig T, Reina F, Verdú E, et al. Epigallocatechin‐3‐gallate treatment reduces thermal hyperalgesia after spinal cord injury by down‐regulating RhoA expression in mice. Eur J Pain. 2016;20:341–52.

Article  PubMed  Google Scholar 

Agrawal G, Kerr C, Thakor NV, All AH. Characterization of graded multicenter animal spinal cord injury study contusion spinal cord injury using somatosensory-evoked potentials. Spine. 2010;35:1122–7.

Article  PubMed  PubMed Central  Google Scholar 

Shirota Y, Otani T, Wasada S, Ito S, Mieda T, Nakamura K. Inner and outer penetrating spinal cord injuries lead to distinct overground walking in mice. IBRO Neurosci Rep. 2024;16:345–52.

Article  PubMed  PubMed Central  Google Scholar 

Borges PA, Cristante AF, Barros-Filho TEPD, Natalino RJM, Santos GBD, Marcon RM. Standardization of a spinal cord lesion model and neurologic evaluation using mice. Clinics. 2018;73:e293.

Article  PubMed  PubMed Central  Google Scholar 

Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci. 2011;33:1587–97.

Article  PubMed  PubMed Central  Google Scholar 

Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci. 2002;22:6570–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giraldo E, Nebot VJ, Dordevic S, Requejo-Aguilar R, Alastrue-Agudo A, Zagorodko O, et al. A rationally designed self-immolative linker enhances the synergism between a polymer-rock inhibitor conjugate and neural progenitor cells in the treatment of spinal cord injury. Biomaterials. 2021;276:121052.

Article  CAS  PubMed  Google Scholar 

Hara M, Takayasu M, Watanabe K, Noda A, Takagi T, Suzuki Y, et al. Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats. J Neurosurg. 2000;93:94–101.

CAS  PubMed  Google Scholar 

Chan CC, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, et al. Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol. 2005;196:352–64.

Article  CAS  PubMed  Google Scholar 

Wang X, Li B, Wang Z, Wang F, Liang J, Chen C, et al. miR-30b promotes spinal cord sensory function recovery via the Sema3A/NRP-1/PlexinA1/RhoA/ROCK pathway. J Cell Mol Med. 2020;24:12285–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu X, Walker CL, Lu Q, Wu W, Eddelman DB, Parish JM, et al. RhoA/Rho kinase mediates neuronal death through regulating cPLA2 activation. Mol Neurobiol. 2017;54:6885–95.

Article  CAS  PubMed  Google Scholar 

Kubo T, Endo M, Hata K, Taniguchi J, Kitajo K, Tomura S, et al. Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem. 2008;105:113–26.

Article  CAS  PubMed  Google Scholar 

Mimura F, Yamagishi S, Arimura N, Fujitani M, Kubo T, Kaibuchi K, et al. Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem. 2006;281:15970–9.

Article  CAS  PubMed  Google Scholar 

Chan CCM, Wong AK, Liu J, Steeves JD, Tetzlaff W. ROCK inhibition with Y27632 activates astrocytes and increases their expression of neurite growth-inhibitory chondroitin sulfate proteoglycans. Glia. 2007;55:369–84.

Article  PubMed  Google Scholar 

Zhan J, He J, Chen M, Luo D, Lin D. Fasudil promotes BMSC migration via activating the MAPK signaling pathway and application in a model of spinal cord injury. Stem Cell Int. 2018;2018:9793845.

Google Scholar 

Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol. 2003;162:233–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JY, Choi SY, Oh TH, Yune TY. 17beta-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury. Endocrinology. 2012;153:3815–27.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif