Development and validation of a new diagnostic prediction model for NAFLD based on machine learning algorithms in NHANES 2017-2020.3

Powell EE, Wong VW, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397(10290):2212–2224. https://doi.org/10.1016/S0140-6736(20)32511-3

Article  CAS  PubMed  Google Scholar 

Nassir F (2022) NAFLD: mechanisms, treatments, and biomarkers. Biomolecules 12(6):824. https://doi.org/10.3390/biom12060824

Article  CAS  PubMed  PubMed Central  Google Scholar 

Targher G, Tilg H, Byrne CD (2021) Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol Hepatol 6(7):578–588. https://doi.org/10.1016/S2468-1253(21)00020-0

Article  PubMed  Google Scholar 

Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, Clark JM (2011) Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 54(3):1082–1090. https://doi.org/10.1002/hep.24452

Article  PubMed  Google Scholar 

Lubner MG, Graffy PM, Said A, Watson R, Zea R, Malecki KM, Pickhardt PJ (2021) Utility of multiparametric CT for identification of high-risk NAFLD. AJR Am J Roentgenol 216(3):659–668. https://doi.org/10.2214/AJR.20.22842

Article  PubMed  Google Scholar 

Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Ledinghen V, Kumar M, Lupsor-Platon M, Han KH, Cardoso AC et al (2017) Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 66(5):1022–1030. https://doi.org/10.1016/j.jhep.2016.12.022

Article  PubMed  Google Scholar 

Tamaki N, Ajmera V, Loomba R (2022) Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. Nat Rev Endocrinol 18(1):55–66. https://doi.org/10.1038/s41574-021-00584-0

Article  CAS  PubMed  Google Scholar 

Castera L, Friedrich-Rust M, Loomba R (2019) Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156(5):1264–1281. https://doi.org/10.1053/j.gastro.2018.12.036

Article  PubMed  Google Scholar 

Deo RC (2015) Machine learning in medicine. Circulation 132(20):1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

Article  PubMed  PubMed Central  Google Scholar 

Boutet A, Madhavan R, Elias G, Joel SE, Gramer R, Ranjan M, Paramanandam V, Xu D, Germann J, Loh A et al (2021) Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat Commun 12(1):3043. https://doi.org/10.1038/s41467-021-23311-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C, Pouleur AC, Knappe D, Biering-Sorensen T, Kutyifa V et al (2019) Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail 21(1):74–85. https://doi.org/10.1002/ejhf.1333

Article  PubMed  Google Scholar 

Binson VA, Thomas S, Subramoniam M, Arun J, Naveen S, Madhu S (2024) A review of machine learning algorithms for biomedical applications. Ann Biomed Eng 52(5):1159–1183. https://doi.org/10.1007/s10439-024-03459-3

Article  CAS  PubMed  Google Scholar 

Zheng K, Yin Y, Guo H, Ma L, Liu R, Zhao T, Wei Y, Zhao Z, Cheng W (2024) Association between the ZJU index and risk of new-onset non-alcoholic fatty liver disease in non-obese participants: a Chinese longitudinal prospective cohort study. Front Endocrinol (Lausanne) 15:1340644. https://doi.org/10.3389/fendo.2024.1340644

Article  PubMed  Google Scholar 

Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, Kim YJ, Yoon JH, Cho SH, Sung MW et al (2010) Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis 42(7):503–508. https://doi.org/10.1016/j.dld.2009.08.002

Article  CAS  PubMed  Google Scholar 

Riviere B, Jaussent A, Macioce V, Faure S, Builles N, Lefebvre P, Geraud P, Picot MC, Rebuffat S, Renard E et al (2022) The triglycerides and glucose (TyG) index: a new marker associated with nonalcoholic steatohepatitis (NASH) in obese patients. Diabetes Metab 48(4):101345. https://doi.org/10.1016/j.diabet.2022.101345

Article  CAS  PubMed  Google Scholar 

Long MT, Pedley A, Colantonio LD, Massaro JM, Hoffmann U, Muntner P, Fox CS (2016) Development and validation of the framingham steatosis index to identify persons with hepatic steatosis. Clin Gastroenterol Hepatol 14(8):1172–1180. https://doi.org/10.1016/j.cgh.2016.03.034

Article  PubMed  PubMed Central  Google Scholar 

Crudele L, De Matteis C, Novielli F, Di Buduo E, Petruzzelli S, De Giorgi A, Antonica G, Berardi E, Moschetta A (2024) Fatty liver index (FLI) is the best score to predict MASLD with 50% lower cut-off value in women than in men. Biol Sex Differ 15(1):43. https://doi.org/10.1186/s13293-024-00617-z

Article  PubMed  PubMed Central  Google Scholar 

Ismaiel A, Jaaouani A, Leucuta DC, Popa SL, Dumitrascu DL (2021) The visceral adiposity index in non-alcoholic fatty liver disease and liver fibrosis-systematic review and meta-analysis. Biomedicines 9(12):1890. https://doi.org/10.3390/biomedicines9121890

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berzigotti A (2014) Getting closer to a point-of-care diagnostic assessment in patients with chronic liver disease: controlled attenuation parameter for steatosis. J Hepatol 60(5):910–912. https://doi.org/10.1016/j.jhep.2014.01.017

Article  PubMed  Google Scholar 

Cao YT, Xiang LL, Qi F, Zhang YJ, Chen Y, Zhou XQ (2022) Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: a systematic review and meta-analysis. EClinicalMedicine 51:101547. https://doi.org/10.1016/j.eclinm.2022.101547

Article  PubMed  PubMed Central  Google Scholar 

Tibshirani R, Friedman J (2020) A Pliable Lasso. J Comput Graph Stat 29(1):215–225. https://doi.org/10.1080/10618600.2019.1648271

Article  PubMed  PubMed Central  Google Scholar 

Song X, Liu X, Liu F, Wang C (2021) Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int J Med Inf 151:104484. https://doi.org/10.1016/j.ijmedinf.2021.104484

Article  Google Scholar 

Schmitt JJ, Baker MV, Occhino JA, McGree ME, Weaver AL, Bakkum-Gamez JN, Dowdy SC, Pasupathy KS, Gebhart JB (2020) Prospective implementation and evaluation of a decision-tree algorithm for route of hysterectomy. Obstet Gynecol 135(4):761–769. https://doi.org/10.1097/AOG.0000000000003725

Article  PubMed  PubMed Central  Google Scholar 

Hu J, Szymczak S (2023) A review on longitudinal data analysis with random forest. Brief Bioinform 24(2):bbad002. https://doi.org/10.1093/bib/bbad002

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Ma X, Zhang J, Sun D, Zhou X, Mi C, Wen H (2023) Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage 332:117357. https://doi.org/10.1016/j.jenvman.2023.117357

Article  PubMed  Google Scholar 

Saini I, Singh D, Khosla A (2013) QRS detection using K-Nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res 4(4):331–344. https://doi.org/10.1016/j.jare.2012.05.007

Article  PubMed  Google Scholar 

Zhao Y, Wan Q, He X (2024) Construction of IRAK4 inhibitor activity prediction model based on machine learning. Mol Divers 28(4):2289–2300. https://doi.org/10.1007/s11030-024-10926-5

Article  CAS  PubMed  Google Scholar 

Albaradei S, Thafar M, Alsaedi A, Van Neste C, Gojobori T, Essack M, Gao X (2021) Machine learning and deep learning methods that use omics data for metastasis prediction. Comput Struct Biotechnol J 19:5008–5018. https://doi.org/10.1016/j.csbj.2021.09.001

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif