Emergence of MDR Enterobacter hormaechei RSM5 in Pharma Effluent and its Implications in β-lactam Antibiotic Removal from Effluent

Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol 74(3):417–433. https://doi.org/10.1128/MMBR.00016-10

Article  CAS  Google Scholar 

Trovó AG, Nogueira RF, Agüera A, Sirtori C, Fernández-Alba AR (2009) Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment. Chemosphere 77(10):1292–1298. https://doi.org/10.1016/j.chemosphere.2009.09.065

Article  CAS  PubMed  Google Scholar 

Giraldo-Aguirre AL, Serna-Galvis EA, Erazo-Erazo ED, Silva-Agredo J, Giraldo-Ospina H, Flórez-Acosta OA, Torres-Palma RA (2018) Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environ Sci Pollut Res 25:20293–20303. https://doi.org/10.1007/s11356-017-8420-z

Article  CAS  Google Scholar 

Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75(4):417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

Article  CAS  PubMed  Google Scholar 

Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C (2018) Tackling the antibiotic resistance caused by class A β-lactamases through the use of β-lactamase inhibitory protein. Int J Mol Sci 19(8):2222. https://doi.org/10.3390/ijms19082222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halling-Sørensen BNNS, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere 36(2):357–393. https://doi.org/10.1016/S0045-6535(97)00354-8

Article  PubMed  Google Scholar 

Livermore DM (1998) Beta-lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother, 41(suppl_4), pp.25–41. https://doi.org/10.1093/jac/41.suppl_4.25

Wilke MS, Lovering AL, Strynadka NC (2005) β-Lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 8(5):525–533. https://doi.org/10.1016/j.mib.2005.08.016

Article  CAS  PubMed  Google Scholar 

Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57(10):1451–1470. https://doi.org/10.1016/j.addr.2005.04.002

Article  CAS  PubMed  Google Scholar 

da Silva Y, Ferrari R, Marin VA, Junior CAC (2019) A Global Overview of β-lactam Resistance Genes in. Open Forum Infect Dis, 11(1). https://doi.org/10.2174/1874279301911010022

Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17(7):441–448. https://doi.org/10.1038/s41579-019-0196-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS (2020) Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep 21(12):e51034. https://doi.org/10.15252/embr.202051034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotwani A, Joshi J, Kaloni D (2021) Pharmaceutical effluent: a critical link in the interconnected ecosystem promoting antimicrobial resistance. Environ Sci Pollut Res 28(25):32111–32124. https://doi.org/10.1007/s11356-021-14178-w

Article  CAS  Google Scholar 

Ahmad I, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 27:101–111. https://doi.org/10.1016/j.jgar.2021.08.001

Article  CAS  PubMed  Google Scholar 

Obayiuwana A, Ogunjobi A, Yang M, Ibekwe M (2018) Characterization of bacterial communities and their antibiotic resistance profiles in wastewaters obtained from pharmaceutical facilities in Lagos and Ogun States, Nigeria. Int J Environ Res Public Health 15(7):1365. https://doi.org/10.3390/ijerph15071365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bharathala S, Singh R, Sharma P (2020) Controlled release and enhanced biological activity of chitosan-fabricated carbenoxolone nanoparticles. Int J Biol Macromol 164:45–52. https://doi.org/10.1016/j.ijbiomac.2020.07.086

Article  CAS  PubMed  Google Scholar 

Sharma C, Salem GEM, Sharma N, Gautam P, Singh R (2019) Thrombolytic potential of novel thiol-dependent fibrinolytic protease from Bacillus cereus RSA1. Biomolecules 10(1):3. https://doi.org/10.3390/biom10010003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra A, Sreedharan SM, Singh R (2021) Concrete crack restoration using bacterially induced calcium metabolism. Indian J Microbiol 61(2):229–233. https://doi.org/10.1007/s12088-020-00916-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S, Singh R (2014) Hydrolyzing proficiency of keratinases in feather degradation. Indian J Microbiol 54:466–470. https://doi.org/10.1007/s12088-014-0477-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sreedharan SM, Singh R (2019) Ciprofloxacin functionalized biogenic gold nanoflowers as nanoantibiotics against pathogenic bacterial strains. Int J Nanomed, pp.9905–9916. https://doi.org/10.2147/IJN.S224488

Lee WS, Komarmy LOUIS (1981) Iodometric spot test for detection of beta-lactamase in Haemophilus influenzae. J Clin Microbiol 13(1):224–225. https://doi.org/10.1128/jcm.13.1.224-225.1981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawai T, Takahashi I, Yamagishi S (1978) Iodometric assay method for beta-lactamase with various beta-lactam antibiotics as substrates. Antimicrob Agents Chemother 13(6):910–913. https://doi.org/10.1128/aac.13.6.910

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu CT, Li CY, Yang LJ, Huo GC (2014). Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov. International journal of systematic and evolutionary microbiology, 64(Pt_8), pp.2650–2656. https://doi.org/10.1099/ijs.0.064709-0

Sykes RB, Nordström K (1972) Microiodometric determination of β-lactamase activity. Antimicrob Agents Chemother 1(2):94–99. https://doi.org/10.1128/aac.1.2.94

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jendrzejewska N, Karwowska E (2022) Bacterial Resistance to β-Lactam Antibiotics in Municipal Wastewater: Insights from a Full-Scale Treatment Plant in Poland. Microorganisms 10(12):2323. https://doi.org/10.3390/microorganisms10122323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teshome A, Alemayehu T, Deriba W, Ayele Y (2020) Antibiotic resistance profile of bacteria isolated from wastewater systems in Eastern Ethiopia. J Environ Public Health 2020:1–10. https://doi.org/10.1155/2020/2796365

Article  CAS  Google Scholar 

Rafferty B, Dolgilevich S, Kalachikov S, Morozova I, Ju J, Whittier S, Nowygrod R, Kozarov E (2011) Cultivation of Enterobacter hormaechei from human atherosclerotic tissue. J Atheroscler Thromb 18(1):72–81. https://doi.org/10.5551/jat.5207

Article  CAS  PubMed  Google Scholar 

Cao Z, Cui L, Liu Q, Liu F, Zhao Y, Guo K, Hu T, Zhang F, Sheng X, Wang X, Peng Z (2022) Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Microbiol Spectr 10(3):e02518-e2521. https://doi.org/10.1128/spectrum.02518-21

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lateef A (2004) The microbiology of a pharmaceutical effluent and its public health implications. World J Microbiol Biotechnol 20:167–171. https://doi.org/10.1023/B:WIBI.0000021752.29468.4e

Article  CAS  Google Scholar 

Ruiz J, Capitano L, Nuñez L, Castro D, Sierra JM, Hatha M, Borrego JJ, Vila J (1999) Mechanisms of resistance to ampicillin, chloramphenicol and quinolones in multiresistant Salmonella typhimurium strains isolated from fish. J Antimicrob Chemother 43(5):699–702. https://doi.org/10.1093/jac/43.5.699

Article  CAS 

留言 (0)

沒有登入
gif