Erwinia aeris sp. nov., A Novel Bacterium Isolated from the Surface of an Ore in Hubei Province, China

Winslow CE, Broadhurst J, Buchanan RE et al (1920) The families and genera of the bacteria: final report of the Committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J Bacteriol 5:191–229. https://doi.org/10.1128/jb.5.3.191-229.1920

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parte AC (2018) LPSN-List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 68:1825–1829. https://doi.org/10.1099/ijsem.0.002786

Article  PubMed  Google Scholar 

Gardan L, Christen R, Achouak W et al (2004) Erwinia papayae sp. nov., a pathogen of papaya (Carica papaya). Int J Syst Evol Microbiol 54:107–113. https://doi.org/10.1099/ijs.0.02718-0

Article  CAS  PubMed  Google Scholar 

López MM, Roselló M, Llop P et al (2011) Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol 61:561–567. https://doi.org/10.1099/ijs.0.020479-0

Article  CAS  PubMed  Google Scholar 

Matsuura T, Mizuno A, Tsukamoto T et al (2012) Erwinia uzenensis sp. nov., a novel pathogen that affects European pear trees (Pyrus communis L.). Int J Syst Evol Microbiol 62:1799–1803. https://doi.org/10.1099/ijs.0.032011-0

Article  CAS  PubMed  Google Scholar 

Mergaert J, Hauben L, Cnockaert MC et al (1999) Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49:377–383. https://doi.org/10.1099/00207713-49-2-377

Article  PubMed  Google Scholar 

Geider K, Auling G, Du Z et al (2006) Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56:2937–2943. https://doi.org/10.1099/ijs.0.64032-0

Article  CAS  PubMed  Google Scholar 

Rojas AM, de Los Rios JEG, Saux MFL et al (2004) Erwinia toletana sp. nov., associated with Pseudomonas savastano-induced tree knots. Int J Syst Evol Microbiol 54:2217–2222

Article  PubMed  Google Scholar 

Liu B, Liu GH, Sengonca C et al (2015) Bacillus solani sp. nov. isolated from rhizosphere soil of potato field in Xinjiang of China. Int J Syst Evol Microbiol 65(11):4066–4071. https://doi.org/10.1099/ijsem.0.000539

Article  CAS  PubMed  Google Scholar 

Pan MK, Feng GD, Yao Q et al (2022) Erwinia phyllosphaerae sp. nov., a novel bacterium isolated from phyllosphere of pomelo (Citrus maxima). Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005316

Article  PubMed  Google Scholar 

Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

Article  CAS  PubMed  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  CAS  PubMed  Google Scholar 

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

Article  CAS  PubMed  Google Scholar 

Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406. https://doi.org/10.1093/sysbio/20.4.406

Article  Google Scholar 

Tamura K, Dudley J, Nei M et al (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. https://doi.org/10.1093/molbev/msm092

Article  CAS  PubMed  Google Scholar 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Article  PubMed  Google Scholar 

Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

Article  CAS  PubMed  PubMed Central  Google Scholar 

John BE, Bass L (2001) Usability and software architecture. Behav Inform Technol 20(5):329–338. https://doi.org/10.1080/01449290110081686

Article  Google Scholar 

Lowe TM (1997) Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

Article  CAS  PubMed  PubMed Central  Google Scholar 

Na SI, Kim YO, Yoon SH et al (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

Article  CAS  PubMed  Google Scholar 

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meier-Kolthoff JP, Auch AF, Klenk HP et al (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

Article  PubMed  PubMed Central  Google Scholar 

Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

Article  CAS  PubMed  PubMed Central  Google Scholar 

Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226

Article  CAS  PubMed  Google Scholar 

Zhang H, Yohe T, Huang L et al (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101. https://doi.org/10.1093/nar/gky418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Miranda S, Cabirol N, George-Téllez R et al (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131. https://doi.org/10.1016/j.mimet.2007.03.023

Article  CAS  PubMed  Google Scholar 

Li Y, Wu S, Wang L et al (2010) Differentiation of bacteria using fatty acid profiles from gas chromatography-tandem mass spectrometry. J Sci Food Agric 90(8):1380–1383. https://doi.org/10.1002/jsfa.3931

Article  CAS  PubMed  Google Scholar 

Collins MD, Pirouz T, Goodfellow M et al (1977) Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 100(2):221–230. https://doi.org/10.1099/00221287-100-2-221

Article  CAS  PubMed  Google Scholar 

Groth I, Schumann P, Weiss N et al (1996) Agrococcus jenensis gen nov., sp. nov., a new genus of actinomycetes with diamino butyric acid in the cell wall. Int J Syst Bacteriol. 46:234–239. https://doi.org/10.1099/00207713-46-1-234

Article  CAS  PubMed 

留言 (0)

沒有登入
gif