Current molecular understanding of central nervous system schwannomas

Komatsuzaki A, Tsunoda A (2001) Nerve origin of the acoustic neuroma. J Laryngol Otol 115:376–379. https://doi.org/10.1258/0022215011907910

Article  CAS  PubMed  Google Scholar 

Carlson ML, Link MJ (2021) Vestibular Schwannomas. N Engl J Med 384:1335–1348. https://doi.org/10.1056/NEJMra2020394

Article  PubMed  Google Scholar 

Springborg JB, Poulsgaard L, Thomsen J (2008) Nonvestibular schwannoma tumors in the cerebellopontine angle: a structured approach and management guidelines. Skull Base 18:217–227. https://doi.org/10.1055/s-2007-1016959

Article  PubMed  PubMed Central  Google Scholar 

Plotkin SR, Messiaen L, Legius E, Pancza P, Avery RA, Blakeley JO et al (2022) Updated diagnostic criteria and nomenclature for neurofibromatosis type 2 and schwannomatosis: an international consensus recommendation. Genet Med 24:1967–1977. https://doi.org/10.1016/j.gim.2022.05.007

Article  CAS  PubMed  Google Scholar 

Halliday J, Rutherford SA, McCabe MG, Evans DG (2018) An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev Neurother 18:29–39. https://doi.org/10.1080/14737175.2018.1399795

Article  CAS  PubMed  Google Scholar 

Huang X, Xu J, Xu M, Zhou LF, Zhang R, Lang L et al (2013) Clinical features of intracranial vestibular schwannomas. Oncol Lett 5:57–62. https://doi.org/10.3892/ol.2012.1011

Article  PubMed  Google Scholar 

Picry A, Bonne NX, Ding J, Aboukais R, Lejeune JP, Baroncini M et al (2016) Long-term growth rate of vestibular schwannoma in neurofibromatosis 2: a volumetric consideration. Laryngoscope 126:2358–2362. https://doi.org/10.1002/lary.25976

Article  PubMed  Google Scholar 

Teranishi Y, Miyawaki S, Nakatomi H, Ohara K, Hongo H, Dofuku S et al (2022) Early prediction of functional prognosis in neurofibromatosis type 2 patients based on genotype-phenotype correlation with targeted deep sequencing. Sci Rep 12:9543. https://doi.org/10.1038/s41598-022-13580-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abul-Kasim K, Thurnher MM, McKeever P, Sundgren PC (2008) Intradural spinal tumors: current classification and MRI features. https://doi.org/10.1007/s00234-007-0345-7. Neuroradiology 50:301–14

Helbing DL, Schulz A, Morrison H (2020) Pathomechanisms in schwannoma development and progression. Oncogene 39:5421–5429. https://doi.org/10.1038/s41388-020-1374-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett TF, Patel B, Khan SM, Mullins RDZ, Yim AKY, Pugazenthi S et al (2024) Single-cell multi-omic analysis of the vestibular schwannoma ecosystem uncovers a nerve injury-like state. Nat Commun 15:478. https://doi.org/10.1038/s41467-023-42762-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu SJ, Casey-Clyde T, Cho NW, Swinderman J, Pekmezci M, Dougherty MC et al (2024) Epigenetic reprogramming shapes the cellular landscape of schwannoma. Nat Commun 15:476. https://doi.org/10.1038/s41467-023-40408-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulz A, Büttner R, Hagel C, Baader SL, Kluwe L, Salamon J et al (2016) The importance of nerve microenvironment for schwannoma development. Acta Neuropathol 132:289–307. https://doi.org/10.1007/s00401-016-1583-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doddrell RD, Dun XP, Shivane A, Feltri ML, Wrabetz L, Wegner M et al (2013) Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. Brain 136:549–563. https://doi.org/10.1093/brain/aws353

Article  PubMed  PubMed Central  Google Scholar 

Flaiz C, Kaempchen K, Matthies C, Hanemann CO (2007) Actin-rich protrusions and nonlocalized GTPase activation in Merlin-deficient schwannomas. J Neuropathol Exp Neurol 66:608–616. https://doi.org/10.1097/nen.0b013e318093e555

Article  CAS  PubMed  Google Scholar 

Flaiz C, Utermark T, Parkinson DB, Poetsch A, Hanemann CO (2008) Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells. Glia 56:506–515. https://doi.org/10.1002/glia.20629

Article  CAS  PubMed  Google Scholar 

Petrilli AM, Fernández-Valle C (2016) Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35:537–548. https://doi.org/10.1038/onc.2015.125

Article  CAS  PubMed  Google Scholar 

Shimizu T, Seto A, Maita N, Hamada K, Tsukita S, Tsukita S, Hakoshima T (2002) Structural basis for neurofibromatosis type 2. Crystal structure of the Merlin FERM domain. J Biol Chem 277:10332–10336. https://doi.org/10.1074/jbc.M109979200

Article  CAS  PubMed  Google Scholar 

Sher I, Hanemann CO, Karplus PA, Bretscher A (2012) The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell 22:703–705. https://doi.org/10.1016/j.devcel.2012.03.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO (2008) Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 68:5236–5245. https://doi.org/10.1158/0008-5472.Can-07-5849

Article  CAS  PubMed  Google Scholar 

Neff BA, Voss SG, Schmitt WR, Driscoll CL, Link MJ, Beatty CW, Kita H (2012) Inhibition of MEK pathway in vestibular schwannoma cell culture. Laryngoscope 122:2269–2278. https://doi.org/10.1002/lary.23472

Article  CAS  PubMed  Google Scholar 

López-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG (2009) Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29:4235–4249. https://doi.org/10.1128/mcb.01578-08

Article  PubMed  PubMed Central  Google Scholar 

Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J et al (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19:27–38. https://doi.org/10.1016/j.devcel.2010.06.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10:1204–1212. https://doi.org/10.1593/neo.08642

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI (2010) The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 19:727–739. https://doi.org/10.1016/j.devcel.2010.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis–the NF2 tumor suppressor, Merlin. Genes Dev 19:2265–2277. https://doi.org/10.1101/gad.1335605

Article  CAS  PubMed  Google Scholar 

Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15:968–980. https://doi.org/10.1101/gad.189601

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI (2007) Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 177:893–903.

留言 (0)

沒有登入
gif