Komatsuzaki A, Tsunoda A (2001) Nerve origin of the acoustic neuroma. J Laryngol Otol 115:376–379. https://doi.org/10.1258/0022215011907910
Article CAS PubMed Google Scholar
Carlson ML, Link MJ (2021) Vestibular Schwannomas. N Engl J Med 384:1335–1348. https://doi.org/10.1056/NEJMra2020394
Springborg JB, Poulsgaard L, Thomsen J (2008) Nonvestibular schwannoma tumors in the cerebellopontine angle: a structured approach and management guidelines. Skull Base 18:217–227. https://doi.org/10.1055/s-2007-1016959
Article PubMed PubMed Central Google Scholar
Plotkin SR, Messiaen L, Legius E, Pancza P, Avery RA, Blakeley JO et al (2022) Updated diagnostic criteria and nomenclature for neurofibromatosis type 2 and schwannomatosis: an international consensus recommendation. Genet Med 24:1967–1977. https://doi.org/10.1016/j.gim.2022.05.007
Article CAS PubMed Google Scholar
Halliday J, Rutherford SA, McCabe MG, Evans DG (2018) An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev Neurother 18:29–39. https://doi.org/10.1080/14737175.2018.1399795
Article CAS PubMed Google Scholar
Huang X, Xu J, Xu M, Zhou LF, Zhang R, Lang L et al (2013) Clinical features of intracranial vestibular schwannomas. Oncol Lett 5:57–62. https://doi.org/10.3892/ol.2012.1011
Picry A, Bonne NX, Ding J, Aboukais R, Lejeune JP, Baroncini M et al (2016) Long-term growth rate of vestibular schwannoma in neurofibromatosis 2: a volumetric consideration. Laryngoscope 126:2358–2362. https://doi.org/10.1002/lary.25976
Teranishi Y, Miyawaki S, Nakatomi H, Ohara K, Hongo H, Dofuku S et al (2022) Early prediction of functional prognosis in neurofibromatosis type 2 patients based on genotype-phenotype correlation with targeted deep sequencing. Sci Rep 12:9543. https://doi.org/10.1038/s41598-022-13580-9
Article CAS PubMed PubMed Central Google Scholar
Abul-Kasim K, Thurnher MM, McKeever P, Sundgren PC (2008) Intradural spinal tumors: current classification and MRI features. https://doi.org/10.1007/s00234-007-0345-7. Neuroradiology 50:301–14
Helbing DL, Schulz A, Morrison H (2020) Pathomechanisms in schwannoma development and progression. Oncogene 39:5421–5429. https://doi.org/10.1038/s41388-020-1374-5
Article CAS PubMed PubMed Central Google Scholar
Barrett TF, Patel B, Khan SM, Mullins RDZ, Yim AKY, Pugazenthi S et al (2024) Single-cell multi-omic analysis of the vestibular schwannoma ecosystem uncovers a nerve injury-like state. Nat Commun 15:478. https://doi.org/10.1038/s41467-023-42762-w
Article CAS PubMed PubMed Central Google Scholar
Liu SJ, Casey-Clyde T, Cho NW, Swinderman J, Pekmezci M, Dougherty MC et al (2024) Epigenetic reprogramming shapes the cellular landscape of schwannoma. Nat Commun 15:476. https://doi.org/10.1038/s41467-023-40408-5
Article CAS PubMed PubMed Central Google Scholar
Schulz A, Büttner R, Hagel C, Baader SL, Kluwe L, Salamon J et al (2016) The importance of nerve microenvironment for schwannoma development. Acta Neuropathol 132:289–307. https://doi.org/10.1007/s00401-016-1583-8
Article CAS PubMed PubMed Central Google Scholar
Doddrell RD, Dun XP, Shivane A, Feltri ML, Wrabetz L, Wegner M et al (2013) Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells. Brain 136:549–563. https://doi.org/10.1093/brain/aws353
Article PubMed PubMed Central Google Scholar
Flaiz C, Kaempchen K, Matthies C, Hanemann CO (2007) Actin-rich protrusions and nonlocalized GTPase activation in Merlin-deficient schwannomas. J Neuropathol Exp Neurol 66:608–616. https://doi.org/10.1097/nen.0b013e318093e555
Article CAS PubMed Google Scholar
Flaiz C, Utermark T, Parkinson DB, Poetsch A, Hanemann CO (2008) Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells. Glia 56:506–515. https://doi.org/10.1002/glia.20629
Article CAS PubMed Google Scholar
Petrilli AM, Fernández-Valle C (2016) Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35:537–548. https://doi.org/10.1038/onc.2015.125
Article CAS PubMed Google Scholar
Shimizu T, Seto A, Maita N, Hamada K, Tsukita S, Tsukita S, Hakoshima T (2002) Structural basis for neurofibromatosis type 2. Crystal structure of the Merlin FERM domain. J Biol Chem 277:10332–10336. https://doi.org/10.1074/jbc.M109979200
Article CAS PubMed Google Scholar
Sher I, Hanemann CO, Karplus PA, Bretscher A (2012) The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell 22:703–705. https://doi.org/10.1016/j.devcel.2012.03.008
Article CAS PubMed PubMed Central Google Scholar
Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO (2008) Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 68:5236–5245. https://doi.org/10.1158/0008-5472.Can-07-5849
Article CAS PubMed Google Scholar
Neff BA, Voss SG, Schmitt WR, Driscoll CL, Link MJ, Beatty CW, Kita H (2012) Inhibition of MEK pathway in vestibular schwannoma cell culture. Laryngoscope 122:2269–2278. https://doi.org/10.1002/lary.23472
Article CAS PubMed Google Scholar
López-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG (2009) Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29:4235–4249. https://doi.org/10.1128/mcb.01578-08
Article PubMed PubMed Central Google Scholar
Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J et al (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19:27–38. https://doi.org/10.1016/j.devcel.2010.06.015
Article CAS PubMed PubMed Central Google Scholar
Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10:1204–1212. https://doi.org/10.1593/neo.08642
Article CAS PubMed PubMed Central Google Scholar
Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI (2010) The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 19:727–739. https://doi.org/10.1016/j.devcel.2010.10.008
Article CAS PubMed PubMed Central Google Scholar
McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis–the NF2 tumor suppressor, Merlin. Genes Dev 19:2265–2277. https://doi.org/10.1101/gad.1335605
Article CAS PubMed Google Scholar
Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15:968–980. https://doi.org/10.1101/gad.189601
Article CAS PubMed PubMed Central Google Scholar
Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI (2007) Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 177:893–903.
留言 (0)