Clinical, genomic, and histopathologic diversity in cerebral cavernous malformations

Morris Z, Whiteley WN, Longstreth WT Jr., Weber F, Lee YC, Tsushima Y, Alphs H, Ladd SC, Warlow C, Wardlaw JM al (2009) Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ (Clinical Res ed) 339:b3016. https://doi.org/10.1136/bmj.b3016

Article  Google Scholar 

Otten P, Pizzolato GP, Rilliet B, Berney J (1989) [131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies]. Neurochirurgie 35:82–83

CAS  PubMed  Google Scholar 

Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357:1821–1828. https://doi.org/10.1056/NEJMoa070972

Article  CAS  PubMed  Google Scholar 

Akers A, Al-Shahi Salman R, I AA, Dahlem K, Flemming K, Hart B, Kim H, Jusue-Torres I, Kondziolka D, Lee C et al (2017) Synopsis of Guidelines for the Clinical Management of Cerebral Cavernous Malformations: Consensus Recommendations Based on Systematic Literature Review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery 80:665–680 https://doi.org/10.1093/neuros/nyx091

Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D (2009) Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol 5:659–670. https://doi.org/10.1038/nrneurol.2009.177

Article  PubMed  Google Scholar 

Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R Irthum B (2005) mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76:42–51 https://doi.org/10.1086/426952

Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid AL, Comoy J, Frerebeau P, Gilbert Bet al et al (2004) Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74:326–337. https://doi.org/10.1086/381718

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193. https://doi.org/10.1038/13815

Article  CAS  PubMed  Google Scholar 

Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP al (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73:1459–1464. https://doi.org/10.1086/380314

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, Touchman JW, Gallione CJ, Lee-Lin SQ, Kosofsky B al (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8:2325–2333. https://doi.org/10.1093/hmg/8.12.2325

Article  CAS  PubMed  Google Scholar 

Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD Jr., Mielke MM, Roberts RO, Kremers W, Knopman DS et al (2017) Population-Based Prevalence of Cerebral Cavernous Malformations in Older Adults: Mayo Clinic Study of Aging. JAMA Neurol 74:801–805 https://doi.org/10.1001/jamaneurol.2017.0439

Hong T, Xiao X, Ren J, Cui B, Zong Y, Zou J, Kou Z, Jiang N, Meng G, Zeng Get al et al (2021) Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain 144:2648–2658. https://doi.org/10.1093/brain/awab117

Article  PubMed  Google Scholar 

Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S al (2021) PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594:271–276. https://doi.org/10.1038/s41586-021-03562-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Ren AA, Gao S, Su YS, Yang J, Bockman J, Mericko-Ishizuka P, Griffin J, Shenkar R, Alcazar Ret al et al (2023) mTORC1 inhibitor rapamycin inhibits growth of cerebral cavernous malformation in adult mice. Stroke 54:2906–2917. https://doi.org/10.1161/STROKEAHA.123.044108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huo R, Yang Y, Sun Y, Zhou Q, Zhao S, Mo Z, Xu H, Wang J, Weng J, Jiao Y et al (2023) Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation. Angiogenesis 26:295–312 https://doi.org/10.1007/s10456-023-09866-9

Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, Venot Q, Lerond J, Marijon P, Le Van Abi-Jaoude S T et al (2021) Somatic PIK3CA Mutations in Sporadic Cerebral Cavernous Malformations. N Engl J Med 385:996–1004 https://doi.org/10.1056/NEJMoa2100440

Weng J, Yang Y, Song D, Huo R, Li H, Chen Y, Nam Y, Zhou Q, Jiao Y, Fu W al (2021) Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am J Hum Genet 108:942–950. https://doi.org/10.1016/j.ajhg.2021.04.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomlinson FH, Houser OW, Scheithauer BW, Sundt TM Jr., Okazaki H, Parisi JE (1994) Angiographically occult vascular malformations: a correlative study of features on magnetic resonance imaging and histological examination. Neurosurgery 34:792–799 discussion 799–800. https://doi.org/10.1227/00006123-199405000-00002

Article  CAS  PubMed  Google Scholar 

Al-Shahi Salman R, Berg MJ, Morrison L, Awad IA (2008) Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Angioma Alliance Sci Advisory Board Stroke 39:3222–3230. https://doi.org/10.1161/strokeaha.108.515544

Article  Google Scholar 

Washington CW, McCoy KE, Zipfel GJ (2010) Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. NeuroSurg Focus 29. https://doi.org/10.3171/2010.5.Focus10149

Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432. https://doi.org/10.3171/jns.1994.80.3.0422

Article  CAS  PubMed  Google Scholar 

Ren J, Cui Z, Jiang C, Wang L, Guan Y, Ren Y, Zhang S, Tu T, Yu J, Li Y al (2024) GNA14 and GNAQ somatic mutations cause spinal and intracranial extra-axial cavernous hemangiomas. Am J Hum Genet 111:1370–1382. https://doi.org/10.1016/j.ajhg.2024.05.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salman RA-S, Hall JM, Horne MA, Moultrie F, Josephson CB, Bhattacharya JJ, Counsell CE, Murray GD, Papanastassiou V, Ritchie Vet al et al (2012) Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol 11:217–224. https://doi.org/10.1016/s1474-4422(12)70004-2

Article  Google Scholar 

Snellings DA, Girard R, Lightle R, Srinath A, Romanos S, Li Y, Chen C, Ren AA, Kahn ML, Awad IA et al (2022) Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. Nat Cardiovasc Res 1:246–252 https://doi.org/10.1038/s44161-022-00035-7

McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA et al (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20:211–222 https://doi.org/10.1093/hmg/ddq433

Delestre F, Venot Q, Bayard C, Fraissenon A, Ladraa S, Hoguin C, Chapelle C, Yamaguchi J, Cassaca R, Zerbib Let al et al (2021) Alpelisib administration reduced lymphatic malformations in a mouse model and in patients. Sci Transl Med 13:eabg0809. https://doi.org/10.1126/scitranslmed.abg0809

Article  CAS  PubMed  Google Scholar 

Rodriguez-Laguna L, Agra N, Ibanez K, Oliva-Molina G, Gordo G, Khurana N, Hominick D, Beato M, Colmenero I, Herranz G et al (2019) Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. J Exp Med 216:407–418 https://doi.org/10.1084/jem.20181353

Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, Blanc E, Johnson SC, Hoguin C, Boccara O et al (2018) Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558:540–546 https://doi.org/10.1038/s41586-018-0217-9

Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek VM, Fu S, Piha-Paul SA, Lee JJ, Luthra Ret al (2013) PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res 73:276–284. https://doi.org/10.1158/0008-5472.CAN-12-1726

Leontiadou H, Galdadas I, Athanasiou C, Cournia Z (2018) Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Sci Rep 8: 15544. https://doi.org/10.1038/s41598-018-27044-6

Liu X, Zhou Q, Hart JR, Xu Y, Yang S, Yang D, Vogt PK, Wang MW (2022) Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kalpha. Proc Natl Acad Sci USA 119:e2215621119. https://doi.org/10.1073/pnas.2215621119

Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Rebello RJ, Macpherson AA, Koushyar S, Furic Let al (2018) Identification of Pik3ca Mutation as a Genetic Driver of Prostate Cancer That Cooperates with Pten Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discov 8:764–779. https://doi.org/10.1158/2159-8290.CD-17-0867

Sharma J, Bhardwaj V, Purohit R (2019) Structural Perturbations due to Mutation (H1047R) in Phosphoinositide-3-kinase (PI3Kalpha) and Its Involvement in Oncogenesis: An in Silico Insight. ACS Omega 4:15815–15823. https://doi.org/10.1021/acsomega.9b01439

留言 (0)

沒有登入
gif