Neonatal intermittent hypoxemia events are associated with later systemic hypertension

Kraut, E. J., Boohaker, L. J., Askenazi, D. J., Fletcher, J. & Kent, A. L. Incidence of neonatal hypertension from a large multicenter study [Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates—AWAKEN. Pediatr. Res. 84, 279–289 (2018).

Article  PubMed  Google Scholar 

Starr, M. C. & Flynn, J. T. Neonatal Hypertension: Cases, Causes and Clinical Approach. Pediatr. Nephrol. Berl. Ger. 34, 787–799 (2019).

Article  Google Scholar 

Dionne, J. M., Abitbol, C. L. & Flynn, J. T. Hypertension in infancy: diagnosis, management and outcome. Pediatr. Nephrol. 27, 17–32 (2012).

Flynn, J. T. The hypertensive neonate. Semin. Fetal. Neonatal. Med. 25, 101138 (2020).

Seliem, W. A., Falk, M. C., Shadbolt, B. & Kent, A. L. Antenatal and postnatal risk factors for neonatal hypertension and infant follow-up. Pediatr. Nephrol. 22, 2081–2087 (2007).

Altemose, K. & Dionne, J. M. Neonatal hypertension: concerns within and beyond the neonatal intensive care unit. Clin. Exp. Pediatr. 65, 367–376 (2022).

Sahu, R. et al. Systemic Hypertension Requiring Treatment in the Neonatal Intensive Care Unit. J. Pediatr. 163, 84–88 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Jenkins, R. D. et al. Characteristics of hypertension in premature infants with and without chronic lung disease: a long-term multi-center study. Pediatr. Nephrol. 32, 2115–2124 (2017).

Article  PubMed  Google Scholar 

DiFiore, J., MMacFarlane, P., MMartinR. J. Intermittent Hypoxemia in Preterm Infants. Clin. Perinatol. 46, 553–565 (2019).

Weese-Mayer, D. E. et al. Maturation of cardioventilatory physiological trajectories in extremely preterm infants. Pediatr. Res. 95, 1060–1069 (2024).

Article  PubMed  Google Scholar 

Dormishian, A. et al. Etiology and Mechanism of Intermittent Hypoxemia Episodes in Spontaneously Breathing Extremely Premature Infants. J Pediatr. 262, 113623 (2023).

DiFiore, J. M. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J. Pediatr. 157, 69–73 (2010).

Poets, C. F. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA 314, 595–603 (2015).

Raffay, T. M. et al. Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age. Pediatr. Res. 85, 318–323 (2019).

Article  PubMed  Google Scholar 

Fairchild, K. D., Nagraj, V. P., Sullivan, B. A., Moorman, J. R. & Lake, D. E. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr. Res. 85, 987–993 (2019).

Article  PubMed  Google Scholar 

Ambalavanan, N. et al. Cardiorespiratory Monitoring Data to Predict Respiratory Outcomes in Extremely Preterm Infants. Am. J. Respir. Crit. Care Med. 208, 79–97 (2023).

Hibbs, A. M. et al. Association between Intermittent Hypoxemia and NICU Length of Stay in Preterm Infants. Neonatology. 121, 327–335 (2024).

Tamisier, R. et al. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur. Respir. J. 37, 119–128 (2011).

Article  CAS  PubMed  Google Scholar 

Arnaud, C. Bochaton, T., Pépin, J. L. & Belaidi, E. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch. Cardiovasc. Dis. 113, 350–358 (2020).

Fletcher, E. C., Lesske, J., Qian, W., Miller, C. C. & Unger, T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertens. Dallas Tex. 19, 555–561 (1992).

Article  CAS  Google Scholar 

Bosc, L. V. G., Resta, T., Walker, B. & Kanagy, N. L. Mechanisms of intermittent hypoxia induced hypertension. J. Cell Mol. Med. 14, 3–17 (2010).

Article  PubMed  Google Scholar 

Julien, C. A., Niane, L., Kinkead, R., Bairam, A. & Joseph, V. Carotid sinus nerve stimulation, but not intermittent hypoxia, induces respiratory LTF in adult rats exposed to neonatal intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R192–R205 (2010).

Article  CAS  PubMed  Google Scholar 

Julien, C. A., Kinkead, R., Joseph, V. & Bairam, A. Neonatal Intermittent Hypoxia Induces Persistent Alteration of Baroreflex in Adult Male Rats. In Arterial Chemoreception (eds Nurse, C. A., Gonzalez, C., Peers, C. & Prabhakar, N.) 179–183 (Springer, 2012).

Soukhova-O’Hare, G. K. et al. Postnatal Intermittent Hypoxia and Developmental Programming of Hypertension in Spontaneously Hypertensive Rats. Hypertension 52, 156–162 (2008).

Article  PubMed  Google Scholar 

Prabhakar, N. R., Peng, Y. J. & Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Invest. 130, 5042–5051 (2020).

Prabhakar, N. R., Kumar, G. K. & Peng Y. J. Sympatho-adrenal activation by chronic intermittent hypoxia. J. Appl. Physiol. 113, 1304–1310, (2012).

Dennery, P. A. et al. Pre-Vent: The Prematurity-Related Ventilatory Control study. Pediatr. Res. 85, 769–776 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Cummings, J. J. Oxygen Targeting in Extremely Low Birth Weight Infants. Pediatrics 138, e20161576 (2016).

Walker, M. W., Clark, R. H. & Spitzer, A. R. Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J. Perinatol. 31, 199–205 (2011).

Article  CAS  PubMed  Google Scholar 

Harris, P. A. et al. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 42, 377–381 (2009).

Article  Google Scholar 

Harris, P. A. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).

Hibbs, A. M. Accounting for Multiple Births in Neonatal and Perinatal Trials: Systematic Review and Case Study. J. Pediatr. 156, 202 (2009).

Chu, A., Gozal, D., Cortese, R. & Wang, Y. Cardiovascular dysfunction in adult mice following postnatal intermittent hypoxia. Pediatr. Res. 77, 425–433 (2015).

Article  CAS  PubMed  Google Scholar 

MacFarlane, P. M., Wilkerson, J. E., RLovett-Barr, M. R. & Mitchell, G. S. Reactive Oxygen Species and Respiratory Plasticity Following Intermittent Hypoxia. Respir. Physiol. Neurobiol. 164, 263 (2008).

Nanduri, J. et al. Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proc. Natl. Acad. Sci. USA 106, 1199–1204 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, G. et al. H2S Production by Reactive Oxygen Species in the Carotid Body Triggers Hypertension in a Rodent Model of Sleep Apnea. Sci. Signal 9, ra80 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Shah, V. P. et al. The Relationship between Oxidative Stress, Intermittent Hypoxemia, and Hospital Duration in Moderate Preterm Infants. Neonatology 117, 577–583 (2020).

Article  CAS  PubMed  Google Scholar 

Raffay, T. M. et al. Hypoxemia events in preterm neonates are associated with urine oxidative biomarkers. Pediatr. Res. 94, 1444–1450 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gras, E. et al. Endothelin-1 mediates intermittent hypoxia-induced inflammatory vascular remodeling through HIF-1 activation. J. Appl Physiol. 120, 437–443 (2016).

Article  CAS  PubMed  Google Scholar 

Makarenko, V. V. et al. Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am. J. Physiol. Cell Physiol. 306, C745–C752 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnaud, C. et al. Nonmuscle Myosin Light Chain Kinase: A Key Player in Intermittent Hypoxia-Induced Vascular Alterations. J. Am. Heart Assoc. Cardiovasc Cerebrovasc. Dis. 7, e007893 (2018).

Article  Google Scholar 

Harki, O. et al. Intermittent hypoxia-related alterations in vascular structure and function: a systematic review and meta-analysis of rodent data. Eur. Respir. J. 59, 2100866 (2022).

Zoccal, D. B., Bonagamba, L. G. H., Oliveira, F. R. T., Antunes-Rodrigues, J. & Machado, B. H. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia. Exp. Physiol. 92, 79–85 (2007).

Article  PubMed  Google Scholar 

Silva, A. Q. & Schreihofer, A. M. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J. Physiol. 589, 1463–1476 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Julien, C. A., Joseph, V. & Bairam, A. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups. Respir. Physiol. Neurobiol. 177, 301–312 (2011).

Nock, M. L., DiFiore, J. M., Arko, M. K. & Martin, R. J. Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J. Pediatr. 144, 291–295 (2004).

Article  PubMed  Google Scholar 

Zappitelli, M. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr. Res. 82, 569–573, (2017).

Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pr. 120, c179–c184 (2012).

Article  Google Scholar 

Hingorani, S. et al. Prevalence and Risk Factors for Kidney Disease and Elevated BP in 2-Year-Old Children Born Extremely Premature. Clin. J. Am. Soc. Nephrol. CJASN 17, 1129–1138 (2022).

Article  PubMed  Google Scholar 

Liao, L., Deng, Y., Zhao, D. Association of Low Birth Weight and Premature Birth With the Risk of Metabolic Syndrome: A Meta-Analysis. Front. Pediatr. 8, 405 (2020).

Parkinson, J. R. C., Hyde, M. J., Gale, C., Santhakumaran, S. & Modi, N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics 131, e1240–e1263 (2013).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif