Kraut, E. J., Boohaker, L. J., Askenazi, D. J., Fletcher, J. & Kent, A. L. Incidence of neonatal hypertension from a large multicenter study [Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates—AWAKEN. Pediatr. Res. 84, 279–289 (2018).
Starr, M. C. & Flynn, J. T. Neonatal Hypertension: Cases, Causes and Clinical Approach. Pediatr. Nephrol. Berl. Ger. 34, 787–799 (2019).
Dionne, J. M., Abitbol, C. L. & Flynn, J. T. Hypertension in infancy: diagnosis, management and outcome. Pediatr. Nephrol. 27, 17–32 (2012).
Flynn, J. T. The hypertensive neonate. Semin. Fetal. Neonatal. Med. 25, 101138 (2020).
Seliem, W. A., Falk, M. C., Shadbolt, B. & Kent, A. L. Antenatal and postnatal risk factors for neonatal hypertension and infant follow-up. Pediatr. Nephrol. 22, 2081–2087 (2007).
Altemose, K. & Dionne, J. M. Neonatal hypertension: concerns within and beyond the neonatal intensive care unit. Clin. Exp. Pediatr. 65, 367–376 (2022).
Sahu, R. et al. Systemic Hypertension Requiring Treatment in the Neonatal Intensive Care Unit. J. Pediatr. 163, 84–88 (2013).
Article PubMed PubMed Central Google Scholar
Jenkins, R. D. et al. Characteristics of hypertension in premature infants with and without chronic lung disease: a long-term multi-center study. Pediatr. Nephrol. 32, 2115–2124 (2017).
DiFiore, J., MMacFarlane, P., MMartinR. J. Intermittent Hypoxemia in Preterm Infants. Clin. Perinatol. 46, 553–565 (2019).
Weese-Mayer, D. E. et al. Maturation of cardioventilatory physiological trajectories in extremely preterm infants. Pediatr. Res. 95, 1060–1069 (2024).
Dormishian, A. et al. Etiology and Mechanism of Intermittent Hypoxemia Episodes in Spontaneously Breathing Extremely Premature Infants. J Pediatr. 262, 113623 (2023).
DiFiore, J. M. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J. Pediatr. 157, 69–73 (2010).
Poets, C. F. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA 314, 595–603 (2015).
Raffay, T. M. et al. Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age. Pediatr. Res. 85, 318–323 (2019).
Fairchild, K. D., Nagraj, V. P., Sullivan, B. A., Moorman, J. R. & Lake, D. E. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr. Res. 85, 987–993 (2019).
Ambalavanan, N. et al. Cardiorespiratory Monitoring Data to Predict Respiratory Outcomes in Extremely Preterm Infants. Am. J. Respir. Crit. Care Med. 208, 79–97 (2023).
Hibbs, A. M. et al. Association between Intermittent Hypoxemia and NICU Length of Stay in Preterm Infants. Neonatology. 121, 327–335 (2024).
Tamisier, R. et al. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur. Respir. J. 37, 119–128 (2011).
Article CAS PubMed Google Scholar
Arnaud, C. Bochaton, T., Pépin, J. L. & Belaidi, E. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch. Cardiovasc. Dis. 113, 350–358 (2020).
Fletcher, E. C., Lesske, J., Qian, W., Miller, C. C. & Unger, T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertens. Dallas Tex. 19, 555–561 (1992).
Bosc, L. V. G., Resta, T., Walker, B. & Kanagy, N. L. Mechanisms of intermittent hypoxia induced hypertension. J. Cell Mol. Med. 14, 3–17 (2010).
Julien, C. A., Niane, L., Kinkead, R., Bairam, A. & Joseph, V. Carotid sinus nerve stimulation, but not intermittent hypoxia, induces respiratory LTF in adult rats exposed to neonatal intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R192–R205 (2010).
Article CAS PubMed Google Scholar
Julien, C. A., Kinkead, R., Joseph, V. & Bairam, A. Neonatal Intermittent Hypoxia Induces Persistent Alteration of Baroreflex in Adult Male Rats. In Arterial Chemoreception (eds Nurse, C. A., Gonzalez, C., Peers, C. & Prabhakar, N.) 179–183 (Springer, 2012).
Soukhova-O’Hare, G. K. et al. Postnatal Intermittent Hypoxia and Developmental Programming of Hypertension in Spontaneously Hypertensive Rats. Hypertension 52, 156–162 (2008).
Prabhakar, N. R., Peng, Y. J. & Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Invest. 130, 5042–5051 (2020).
Prabhakar, N. R., Kumar, G. K. & Peng Y. J. Sympatho-adrenal activation by chronic intermittent hypoxia. J. Appl. Physiol. 113, 1304–1310, (2012).
Dennery, P. A. et al. Pre-Vent: The Prematurity-Related Ventilatory Control study. Pediatr. Res. 85, 769–776 (2019).
Article PubMed PubMed Central Google Scholar
Cummings, J. J. Oxygen Targeting in Extremely Low Birth Weight Infants. Pediatrics 138, e20161576 (2016).
Walker, M. W., Clark, R. H. & Spitzer, A. R. Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J. Perinatol. 31, 199–205 (2011).
Article CAS PubMed Google Scholar
Harris, P. A. et al. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 42, 377–381 (2009).
Harris, P. A. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).
Hibbs, A. M. Accounting for Multiple Births in Neonatal and Perinatal Trials: Systematic Review and Case Study. J. Pediatr. 156, 202 (2009).
Chu, A., Gozal, D., Cortese, R. & Wang, Y. Cardiovascular dysfunction in adult mice following postnatal intermittent hypoxia. Pediatr. Res. 77, 425–433 (2015).
Article CAS PubMed Google Scholar
MacFarlane, P. M., Wilkerson, J. E., RLovett-Barr, M. R. & Mitchell, G. S. Reactive Oxygen Species and Respiratory Plasticity Following Intermittent Hypoxia. Respir. Physiol. Neurobiol. 164, 263 (2008).
Nanduri, J. et al. Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities. Proc. Natl. Acad. Sci. USA 106, 1199–1204 (2009).
Article CAS PubMed PubMed Central Google Scholar
Yuan, G. et al. H2S Production by Reactive Oxygen Species in the Carotid Body Triggers Hypertension in a Rodent Model of Sleep Apnea. Sci. Signal 9, ra80 (2016).
Article PubMed PubMed Central Google Scholar
Shah, V. P. et al. The Relationship between Oxidative Stress, Intermittent Hypoxemia, and Hospital Duration in Moderate Preterm Infants. Neonatology 117, 577–583 (2020).
Article CAS PubMed Google Scholar
Raffay, T. M. et al. Hypoxemia events in preterm neonates are associated with urine oxidative biomarkers. Pediatr. Res. 94, 1444–1450 (2023).
Article CAS PubMed PubMed Central Google Scholar
Gras, E. et al. Endothelin-1 mediates intermittent hypoxia-induced inflammatory vascular remodeling through HIF-1 activation. J. Appl Physiol. 120, 437–443 (2016).
Article CAS PubMed Google Scholar
Makarenko, V. V. et al. Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am. J. Physiol. Cell Physiol. 306, C745–C752 (2014).
Article CAS PubMed PubMed Central Google Scholar
Arnaud, C. et al. Nonmuscle Myosin Light Chain Kinase: A Key Player in Intermittent Hypoxia-Induced Vascular Alterations. J. Am. Heart Assoc. Cardiovasc Cerebrovasc. Dis. 7, e007893 (2018).
Harki, O. et al. Intermittent hypoxia-related alterations in vascular structure and function: a systematic review and meta-analysis of rodent data. Eur. Respir. J. 59, 2100866 (2022).
Zoccal, D. B., Bonagamba, L. G. H., Oliveira, F. R. T., Antunes-Rodrigues, J. & Machado, B. H. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia. Exp. Physiol. 92, 79–85 (2007).
Silva, A. Q. & Schreihofer, A. M. Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia. J. Physiol. 589, 1463–1476 (2011).
Article CAS PubMed PubMed Central Google Scholar
Julien, C. A., Joseph, V. & Bairam, A. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups. Respir. Physiol. Neurobiol. 177, 301–312 (2011).
Nock, M. L., DiFiore, J. M., Arko, M. K. & Martin, R. J. Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J. Pediatr. 144, 291–295 (2004).
Zappitelli, M. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr. Res. 82, 569–573, (2017).
Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pr. 120, c179–c184 (2012).
Hingorani, S. et al. Prevalence and Risk Factors for Kidney Disease and Elevated BP in 2-Year-Old Children Born Extremely Premature. Clin. J. Am. Soc. Nephrol. CJASN 17, 1129–1138 (2022).
Liao, L., Deng, Y., Zhao, D. Association of Low Birth Weight and Premature Birth With the Risk of Metabolic Syndrome: A Meta-Analysis. Front. Pediatr. 8, 405 (2020).
Parkinson, J. R. C., Hyde, M. J., Gale, C., Santhakumaran, S. & Modi, N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta-analysis. Pediatrics 131, e1240–e1263 (2013).
留言 (0)