Miller, K. D. et al. Brain and other central nervous system tumor statistics. CA Cancer J. Clin. 71, 381–406 (2021).
Miller, K. D. et al. Cancer statistics for adolescents and young adults. CA Cancer J. Clin. 70, 443–459 (2020).
Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics. CA Cancer J. Clin. 74, 12–49 (2024).
Erickson, S. J., Dinces, S., Kubinec, N. & Annett R. D. Pediatric cancer survivorship: impact upon hair cortisol concentration and family functioning. J. Clin. Psychol. Med. Settings 29, 943–53 (2022).
Palmer, J. D. et al. Late effects of radiation therapy in pediatric patients and survivorship. Pediatr. Blood Cancer 68, e28349 (2021).
Bashore L., Hobbie W., editors. Emerging and ongoing survivorship challenges among childhood cancer survivors and providing risk-based focused follow-up care. Seminars in Oncology Nursing (Elsevier, 2021).
Suh, E. et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the childhood cancer survivor study. Lancet Oncol. 21, 421–435 (2020).
Article PubMed PubMed Central Google Scholar
Janss, A. J., Mazewski, C. & Patterson, B. Guidelines for treatment and monitoring of adult survivors of pediatric brain tumors. Curr. Treat. Options Oncol. 20, 1–12 (2019).
Puhr, A. et al. Self-reported executive dysfunction, fatigue, and psychological and emotional symptoms in physically well-functioning long-term survivors of pediatric brain tumor. Develop. Neuropsychol. 44, 88–103 (2019).
Jones, R. M. & Pattwell, S. S. Future considerations for pediatric cancer survivorship: translational perspectives from developmental neuroscience. Develop. Cogn. Neurosci. 38, 100657 (2019).
Kandula, T. et al. Chemotherapy-induced peripheral neuropathy in long-term survivors of childhood cancer: clinical, neurophysiological, functional, and patient-reported outcomes. JAMA Neurol. 75, 980–988 (2018).
Askins, M. A. & Moore, I. I. I. B. D. Preventing neurocognitive late effects in childhood cancer survivors. J. Child Neurol. 23, 1160–1171 (2008).
Article PubMed PubMed Central Google Scholar
Abdel-Rahman, S. M. et al. Summary of the National Institute of Child Health and Human Development-best Pharmaceuticals for Children Act pediatric formulation initiatives workshop-pediatric biopharmaceutics classification system working group. Clin. Ther. 34, S11–S24 (2012).
Article PubMed PubMed Central Google Scholar
Ali, A. A., Charoo, N. A. & Abdallah, D. B. Pediatric drug development: formulation considerations. Drug Dev. Ind. Pharm. 40, 1283–1299 (2014).
Article CAS PubMed Google Scholar
Christensen, M. L. Best pharmaceuticals for children act and pediatric research equity act: time for permanent status. J. Pediatr. Pharmacol. Ther. 17, 140–141 (2012).
PubMed PubMed Central Google Scholar
Frattarelli, D. A. et al. American Academy of Pediatrics Committee on D. Off-label use of drugs in children. Pediatrics 133, 563–567 (2014).
Giacoia, G. P., Taylor-Zapata, P. & Mattison, D. Eunice Kennedy Shriver National Institute of Child Health and Human Development Pediatric Formulation Initiative: selected reports from working groups. Clin. Ther. 30, 2097–2101 (2008).
Giacoia, G. P. M., Taylor-Zapata, P. M. & Mattison, D. M. Need for appropriate formulations for children: The National Institute of Child Health and Human Development-Pediatric Formulations Initiative, Part 2. Int. J. Pharm. Compd. 11, 220–221 (2007).
Needle, M. N. A proposed modification to the Best Pharmaceuticals for Children Act to benefit pediatric oncology. Pediatr. Blood Cancer 59, 3–4 (2012).
Nelson, R. E. et al. Patent extension policy for paediatric indications: an evaluation of the impact within three drug classes in a state Medicaid programme. Appl. Health Econ. Health Policy 9, 171–181 (2011).
Zajicek A., editor. NIH perspective on the BPCA: clinical trials, training, formulations. Best Pharmaceuticals for Children Act 2014 annual stakeholders meeting; (Bathesda, MD, 2014).
Zajicek, A. The National Institutes of Health and the Best Pharmaceuticals for Children Act. Paediatr. Drugs 11, 45–47 (2009).
Emanuel, E. J. et al. The costs of conducting clinical research. J. Clin. Oncol. 21, 4145–4150 (2003).
Moore, T. J., Zhang, H., Anderson, G. & Alexander, G. C. Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015–2016. JAMA Intern Med. 178, 1451–1457 (2018).
Article PubMed PubMed Central Google Scholar
Foy, A. & Wetmore, C. Pediatric brain tumor syndromes and murine models. Principles and practice of neuro-oncology: a multidisciplinary approach. (eds Mehta, M. P., Chang, S. M., Newton, H. Guha, A. & Vogelbaum, M.) 239–248 (Demos Medical Publishing, 2010).
Segal, D. & Karajannis, M. A. Pediatric brain tumors: an update. Curr. Probl. Pediatr. Adolesc. Health Care 46, 424–250 (2016).
Jones, C., Perryman, L. & Hargrave, D. Paediatric and adult malignant glioma: close relatives or distant cousins? Nat. Rev. Clin. Oncol. 9, 400–413 (2012).
Article CAS PubMed Google Scholar
Vanan, M. I. DD E. DIPG in children–what can we learn from the past? Front. Oncol. 5, 237 (2015).
Article PubMed PubMed Central Google Scholar
Sturm, D. et al. Paediatric and adult glioblastoma: multiform (epi) genomic culprits emerge. Nat. Rev. Cancer 14, 92–107 (2014).
Article CAS PubMed PubMed Central Google Scholar
Karajannis, M. A. et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol. 19, 153–161 (2017).
Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
Article CAS PubMed PubMed Central Google Scholar
Seano, G. et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230–245 (2019).
Article CAS PubMed PubMed Central Google Scholar
Irvine, K. D. & Shraiman, B. I. Mechanical control of growth: ideas, facts and challenges. Development 144, 4238–4248 (2017).
Article CAS PubMed PubMed Central Google Scholar
Bui, L. et al. Role of key genetic mutations on increasing migration of brain cancer cells through confinement. Biomed. Microdevices. 19, 1–11 (2017).
Patel, J. P., Spiller, S. E. & Barker, E. D. Drug penetration in pediatric brain tumors: challenges and opportunities. Pediatr. Blood Cancer 68, e28983 (2021).
Wollmer, E., Ungell, A.-L., Nicolas, J.-M. & Klein S. Review of paediatric gastrointestinal physiology relevant to the absorption of orally administered medicines. Adv. Drug Delivery Rev. 181, 114084 (2022).
Lu, H. & Rosenbaum, S. Developmental pharmacokinetics in pediatric populations. J. Pediatr. Pharmacol. Ther. 19, 262–276 (2014).
PubMed PubMed Central Google Scholar
van Bree N., Wilhelm M. The tumor microenvironment of medulloblastoma: an intricate multicellular network with therapeutic potential. Cancers 14, https://doi.org/10.3390/cancers14205009 (2022).
Budhiraja, S. et al. Immunobiology and cytokine modulation of the pediatric brain tumor microenvironment: a scoping review. Cancers 15, https://doi.org/10.3390/cancers15143655 (2023).
Melcher V., Kerl K. The growing relevance of immunoregulation in pediatric brain tumors. Cancers 13, https://doi.org/10.3390/cancers13225601 (2021).
van Solinge, T. S., Nieland, L., Chiocca, E. A. & Broekman, M. L. D. Advances in local therapy for glioblastoma—taking the fight to the tumour. Nat. Rev. Neurol. 18, 221–236 (2022).
Juweid A. Epidemiology and outcome of glioblastoma. pp. 143–153 (Exon Publications, 2017).
Kleihues, P., Burger, P. C. & Scheithauer, B. W. The new WHO classification of brain tumours. Brain Pathol. 3, 255–268 (1993).
Article CAS PubMed Google Scholar
Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).
留言 (0)