Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273. https://doi.org/10.1016/j.euroneuro.2010.11.009
Article CAS PubMed Google Scholar
Agrawal M, Perumal Y, Bansal S et al (2020) Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food Chem Toxicol 145:111684. https://doi.org/10.1016/j.fct.2020.111684
Article CAS PubMed Google Scholar
Akhtar A, Dhaliwal J, Sah SP (2021) 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology 238:1991–2009. https://doi.org/10.1007/s00213-021-05826-7
Article CAS PubMed Google Scholar
Andrews JS, Desai U, Kirson NY et al (2019) Disease severity and minimal clinically important differences in clinical outcome assessments for Alzheimer’s disease clinical trials. Alzheimers Dement (N Y) 5:354–363. https://doi.org/10.1016/j.trci.2019.06.005
Aslan M, Ozben T (2004) Reactive oxygen and nitrogen species in Alzheimer’s disease. Curr Alzheimer Res 1:111–119. https://doi.org/10.2174/1567205043332162
Article CAS PubMed Google Scholar
Babic Perhoc A, Osmanovic Barilar J, Knezovic A et al (2019) Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. Neuropharmacology 148:50–67. https://doi.org/10.1016/j.neuropharm.2018.12.018
Article CAS PubMed Google Scholar
Baskin DS, Browning JL, Pirozzolo FJ et al (1999) Brain choline acetyltransferase and mental function in Alzheimer disease. Arch Neurol 56:1121–1123. https://doi.org/10.1001/archneur.56.9.1121
Article CAS PubMed Google Scholar
Bierer LM, Haroutunian V, Gabriel S et al (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760. https://doi.org/10.1046/j.1471-4159.1995.64020749.x
Article CAS PubMed Google Scholar
Black SAG, Rylett RJ (2011) Impact of Oxidative - Nitrosative Stress on Cholinergic Presynaptic Function. In: Alzheimer’s Disease Pathogenesis - Core Concepts, Shifting Paradigms and Therapeutic Targets. IntechOpen
Boller F, Forette F (1989) Alzheimer’s disease and THA: a review of the cholinergic theory and of preliminary results. Biomed Pharmacother 43:487–497. https://doi.org/10.1016/0753-3322(89)90109-1
Article CAS PubMed Google Scholar
Brown AJH, Bradley SJ, Marshall FH et al (2021) From structure to clinic: design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer’s disease. Cell 184:5886–5901e22. https://doi.org/10.1016/j.cell.2021.11.001
Article CAS PubMed PubMed Central Google Scholar
Carvajal FJ, Inestrosa NC (2011) Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19. https://doi.org/10.3389/fnmol.2011.00019
Article CAS PubMed PubMed Central Google Scholar
Chen Z-R, Huang J-B, Yang S-L, Hong F-F (2022) Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 27:1816. https://doi.org/10.3390/molecules27061816
Article CAS PubMed PubMed Central Google Scholar
Costa M, Bernardi J, Fiuza T et al (2016) N-acetylcysteine protects memory decline induced by streptozotocin in mice. Chem Biol Interact 253:10–17. https://doi.org/10.1016/j.cbi.2016.04.026
Article CAS PubMed Google Scholar
Counts SE, He B, Che S et al (2007) Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease. Arch Neurol 64:1771–1776. https://doi.org/10.1001/archneur.64.12.1771
Davis KL, Mohs RC, Marin D et al (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406. https://doi.org/10.1001/jama.281.15.1401
Article CAS PubMed Google Scholar
De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer Disease. Diabetes 63:2262–2272. https://doi.org/10.2337/db13-1954
de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113. https://doi.org/10.1177/193229680800200619
Article PubMed PubMed Central Google Scholar
Dekosky ST, Ikonomovic MD, Styren SD et al (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155. https://doi.org/10.1002/ana.10069
Article CAS PubMed Google Scholar
Dennis SH, Pasqui F, Colvin EM et al (2015) Activation of Muscarinic M1 Acetylcholine receptors induces long-term potentiation in the Hippocampus. Cereb Cortex 26:414. https://doi.org/10.1093/cercor/bhv227
Article PubMed PubMed Central Google Scholar
Dineley KT, Westerman M, Bui D et al (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21:4125–4133. https://doi.org/10.1074/jbc.M200066200
Article CAS PubMed PubMed Central Google Scholar
Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36. https://doi.org/10.1007/s00401-009-0532-1
Article CAS PubMed Google Scholar
Dwomoh L, Tejeda GS, Tobin AB (2022) Targeting the M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neuronal Signal 6:NS20210004. https://doi.org/10.1042/NS20210004
Article PubMed PubMed Central Google Scholar
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Article CAS PubMed Google Scholar
Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels are decreased in Alzheimer’s Disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen 26:450–456. https://doi.org/10.1177/1533317511421780
Article PubMed PubMed Central Google Scholar
Felder CC, Goldsmith PJ, Jackson K et al (2018) Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136:449–458. https://doi.org/10.1016/j.neuropharm.2018.01.028
Article CAS PubMed Google Scholar
Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64:1888–1891. https://doi.org/10.1046/j.1471-4159.1995.64041888.x
Article CAS PubMed Google Scholar
Frölich L, Blum-Degen D, Bernstein H-G et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438. https://doi.org/10.1007/s007020050068
García-Ayllón M-S (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22. https://doi.org/10.3389/fnmol.2011.00022
留言 (0)