Cholinergic neurotransmission in the brain of streptozotocin-induced rat model of sporadic Alzheimer’s disease: long-term follow up

Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273. https://doi.org/10.1016/j.euroneuro.2010.11.009

Article  CAS  PubMed  Google Scholar 

Agrawal M, Perumal Y, Bansal S et al (2020) Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food Chem Toxicol 145:111684. https://doi.org/10.1016/j.fct.2020.111684

Article  CAS  PubMed  Google Scholar 

Akhtar A, Dhaliwal J, Sah SP (2021) 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology 238:1991–2009. https://doi.org/10.1007/s00213-021-05826-7

Article  CAS  PubMed  Google Scholar 

Andrews JS, Desai U, Kirson NY et al (2019) Disease severity and minimal clinically important differences in clinical outcome assessments for Alzheimer’s disease clinical trials. Alzheimers Dement (N Y) 5:354–363. https://doi.org/10.1016/j.trci.2019.06.005

Article  PubMed  Google Scholar 

Aslan M, Ozben T (2004) Reactive oxygen and nitrogen species in Alzheimer’s disease. Curr Alzheimer Res 1:111–119. https://doi.org/10.2174/1567205043332162

Article  CAS  PubMed  Google Scholar 

Babic Perhoc A, Osmanovic Barilar J, Knezovic A et al (2019) Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. Neuropharmacology 148:50–67. https://doi.org/10.1016/j.neuropharm.2018.12.018

Article  CAS  PubMed  Google Scholar 

Baskin DS, Browning JL, Pirozzolo FJ et al (1999) Brain choline acetyltransferase and mental function in Alzheimer disease. Arch Neurol 56:1121–1123. https://doi.org/10.1001/archneur.56.9.1121

Article  CAS  PubMed  Google Scholar 

Bierer LM, Haroutunian V, Gabriel S et al (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760. https://doi.org/10.1046/j.1471-4159.1995.64020749.x

Article  CAS  PubMed  Google Scholar 

Black SAG, Rylett RJ (2011) Impact of Oxidative - Nitrosative Stress on Cholinergic Presynaptic Function. In: Alzheimer’s Disease Pathogenesis - Core Concepts, Shifting Paradigms and Therapeutic Targets. IntechOpen

Boller F, Forette F (1989) Alzheimer’s disease and THA: a review of the cholinergic theory and of preliminary results. Biomed Pharmacother 43:487–497. https://doi.org/10.1016/0753-3322(89)90109-1

Article  CAS  PubMed  Google Scholar 

Brown AJH, Bradley SJ, Marshall FH et al (2021) From structure to clinic: design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer’s disease. Cell 184:5886–5901e22. https://doi.org/10.1016/j.cell.2021.11.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvajal FJ, Inestrosa NC (2011) Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19. https://doi.org/10.3389/fnmol.2011.00019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z-R, Huang J-B, Yang S-L, Hong F-F (2022) Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 27:1816. https://doi.org/10.3390/molecules27061816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costa M, Bernardi J, Fiuza T et al (2016) N-acetylcysteine protects memory decline induced by streptozotocin in mice. Chem Biol Interact 253:10–17. https://doi.org/10.1016/j.cbi.2016.04.026

Article  CAS  PubMed  Google Scholar 

Counts SE, He B, Che S et al (2007) Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease. Arch Neurol 64:1771–1776. https://doi.org/10.1001/archneur.64.12.1771

Article  PubMed  Google Scholar 

Davis KL, Mohs RC, Marin D et al (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406. https://doi.org/10.1001/jama.281.15.1401

Article  CAS  PubMed  Google Scholar 

De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer Disease. Diabetes 63:2262–2272. https://doi.org/10.2337/db13-1954

Article  PubMed  Google Scholar 

de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113. https://doi.org/10.1177/193229680800200619

Article  PubMed  PubMed Central  Google Scholar 

Dekosky ST, Ikonomovic MD, Styren SD et al (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155. https://doi.org/10.1002/ana.10069

Article  CAS  PubMed  Google Scholar 

Dennis SH, Pasqui F, Colvin EM et al (2015) Activation of Muscarinic M1 Acetylcholine receptors induces long-term potentiation in the Hippocampus. Cereb Cortex 26:414. https://doi.org/10.1093/cercor/bhv227

Article  PubMed  PubMed Central  Google Scholar 

Dineley KT, Westerman M, Bui D et al (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21:4125–4133. https://doi.org/10.1074/jbc.M200066200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36. https://doi.org/10.1007/s00401-009-0532-1

Article  CAS  PubMed  Google Scholar 

Dwomoh L, Tejeda GS, Tobin AB (2022) Targeting the M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neuronal Signal 6:NS20210004. https://doi.org/10.1042/NS20210004

Article  PubMed  PubMed Central  Google Scholar 

Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels are decreased in Alzheimer’s Disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen 26:450–456. https://doi.org/10.1177/1533317511421780

Article  PubMed  PubMed Central  Google Scholar 

Felder CC, Goldsmith PJ, Jackson K et al (2018) Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136:449–458. https://doi.org/10.1016/j.neuropharm.2018.01.028

Article  CAS  PubMed  Google Scholar 

Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64:1888–1891. https://doi.org/10.1046/j.1471-4159.1995.64041888.x

Article  CAS  PubMed  Google Scholar 

Frölich L, Blum-Degen D, Bernstein H-G et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438. https://doi.org/10.1007/s007020050068

Article  PubMed  Google Scholar 

García-Ayllón M-S (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22. https://doi.org/10.3389/fnmol.2011.00022

Article  CAS  PubMed 

留言 (0)

沒有登入
gif