Black S, Sunderland G, Hackman L, Mallet X. In: Sunderland G, Hackman L XM, editors. Disaster victim identification: experience and practice. Sue Black. CRC Press; 2011. https://doi.org/10.1201/b10926.
Johnson BT, Riemen JAJM. Digital capture of fingerprints in a disaster victim identification setting: a review and case study. Forensic Sci Res [Internet]. 2019;4:293–302. https://doi.org/10.1080/20961790.2018.1521327.
Lee P. Prints charming: how fingerprints are trailblazing mainstream biometrics. Biometric Technol Today. 2017;2017:8–11. https://doi.org/10.1016/S0969-4765(17)30074-7.
Maltoni D, Maio D, Jain AK, Prabhakar S. Fingerprint sensing. Handb Fingerpr Recognit. London: Springer London; 2009. pp. 57–95. https://doi.org/10.1007/978-1-84882-254-2_2.
INTERPOL, Fingerprints (n.d.). https://www.interpol.int/How-we-work/Forensics/Fingerprints. Accessed 17 Feb 2021.
Mulawka M, Miller LS. Postmortem fingerprinting and unidentified human remains. Postmortem fingerprinting unidentified human remain. 2013. https://doi.org/10.1016/j.jflm.2014.03.002.
Mulawka M, Troy M. Evaluation of the Use of a non-contact, 3D scanner for collecting Postmortem fingerprints. Natl Crim Justice Ref Serv. 2016. https://www.ncjrs.gov/pdffiles1/nij/grants/250755.pdf. Accessed Apr 2024.
Kim Y-S, Park H-C, Eom Y-B. The high temperature-moisturizing method for obtaining quality postmortem fingerprints from decomposed fingers. J Exp Biomed Sci. 2007;13:369–74.
Uhle AJ, Leas RL. The boiling technique: a method for obtaining quality postmortem impressions from deteriorating friction ridge skin. J Forensic Identif. 2007;57:358–69.
Tomboc R, Schrader M. Obtaining fingerprint and palmprint impressions from decomposed bodies or burn victims using the Mikrosil Casting Method. J Forensic Identif. 2005;55:471–9.
Massey S, Kroon P. Fingertips: the use of Mikrosil casting putty to obtain fingerprint impressions from a mummified hand. Identif Can. 2010;33(2):66–70.
Rutty GN, Stringer K, Turk EE. Electronic fingerprinting of the dead. Int J Legal Med. 2008;122:77–80.
Article CAS PubMed Google Scholar
Garrett R. Printing decomps: Livescan and Digital Fingerprint systems Streamline identifying the deceased. Law Enforc Technol. 2006;33:22–32.
Darlow LN, Connan J. Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction. J Electron Imaging. 2015;24: 063014. https://doi.org/10.1117/1.jei.24.6.063014.
Liu F, Liu G, Zhao Q, Shen L. Robust and high-security fingerprint recognition system using optical coherence tomography. Neurocomputing. 2020;402:14–28. https://doi.org/10.1016/j.neucom.2020.03.102.
Darlow LN, Connan J. Efficient internal and surface fingerprint extraction and blending using optical coherence tomography. Appl Opt. 2015;54: 9258. https://doi.org/10.1364/ao.54.009258.
Adabi S, Hosseinzadeh M, Noei S, Conforto S, Daveluy S, Clayton A, et al. Universal in vivo Textural Model for Human skin based on Optical Coherence Tomograms. Sci Rep. 2017;7:1–11. https://doi.org/10.1038/s41598-017-17398-8.
Pierce MC, Strasswimmer J, Hyle Park B, Cense B, de Boer JF. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt. 2004;9:287. https://doi.org/10.1117/1.1645797.
Pircher M, Goetzinger E, Leitgeb R, Hitzenberger CK. Three dimensional polarization sensitive OCT of human skin in vivo. Opt Express. 2004;12: 3236. https://doi.org/10.1364/opex.12.003236.
Auksorius E, Raja KB, Topcu B, Ramachandra R, Busch C, Boccara CA. Compact and Mobile full-field Optical Coherence Tomography Sensor for Subsurface Fingerprint Imaging. IEEE Access. 2020;8:15194–204. https://doi.org/10.1117/1.jbo.22.9.096002.
Auksorius E, Boccara AC. Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera. J Biomed Opt. 2017;22(9):1–8. https://doi.org/10.1117/1.JBO.22.9.096002.
Aum J, Kim JH, Jeong J. Live acquisition of internal fingerprint with automated detection of subsurface layers using OCT. IEEE Photonics Technol Lett. 2016;28:163–6. https://doi.org/10.1109/LPT.2015.2487962.
Bossen A, Lehmann R, Meier C. Internal Fingerprint Identification with Optical Coherence Tomography. IEEE Photonics Technol Lett. 2010;22:507–9. https://doi.org/10.1109/LPT.2010.2041347.
Wang H, Ma L, Chen P. External and internal fingerprint extraction based on optical coherence tomography. 2018;77. https://doi.org/10.1117/12.2500446.
Wang H, Yang X, Chen P, Ding B, Liang R, Liu Y. Acquisition and extraction of surface and internal fingerprints from optical coherence tomography through 3D fully convolutional network. Optik (Stuttg). 2020;205: 164176. https://doi.org/10.1016/j.ijleo.2020.164176.
Oostra R-J, Gelderman T, Groen WJM, Uiterdijk HG, Cammeraat ELH, Krap T, et al. Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology (ARISTA) - a taphonomic research facility in the Netherlands for the study of human remains. Forensic Sci Int [Internet]. 2020;317:110483. https://doi.org/10.1016/j.forsciint.2020.110483.
D’Errico J. Surface Fitting using gridfit. Mathworks Central file Exchange; 2021; https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit. Accessed Apr 2021.
Tabassi E, Wilson C, Watson C. Fingerprint Image Quality. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD; 2004; https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905710. Accessed Sept 2024.
Mazlin V, Irsch K, Paques M, Fink M, Claude Boccara A. Curved-field optical coherence tomography: large-field imaging of human corneal cells and nerves. arXiv. 2020;7. https://doi.org/10.1364/optica.396949.
留言 (0)