Non-invasive forensic identification of excavated human remains: capturing surface and internal fingerprints using optical coherence tomography

Black S, Sunderland G, Hackman L, Mallet X. In: Sunderland G, Hackman L XM, editors. Disaster victim identification: experience and practice. Sue Black. CRC Press; 2011. https://doi.org/10.1201/b10926.

Johnson BT, Riemen JAJM. Digital capture of fingerprints in a disaster victim identification setting: a review and case study. Forensic Sci Res [Internet]. 2019;4:293–302. https://doi.org/10.1080/20961790.2018.1521327.

Lee P. Prints charming: how fingerprints are trailblazing mainstream biometrics. Biometric Technol Today. 2017;2017:8–11. https://doi.org/10.1016/S0969-4765(17)30074-7.

Article  Google Scholar 

Maltoni D, Maio D, Jain AK, Prabhakar S. Fingerprint sensing. Handb Fingerpr Recognit. London: Springer London; 2009. pp. 57–95. https://doi.org/10.1007/978-1-84882-254-2_2.

INTERPOL, Fingerprints (n.d.). https://www.interpol.int/How-we-work/Forensics/Fingerprints. Accessed 17 Feb 2021.

Mulawka M, Miller LS. Postmortem fingerprinting and unidentified human remains. Postmortem fingerprinting unidentified human remain. 2013. https://doi.org/10.1016/j.jflm.2014.03.002.

Mulawka M, Troy M. Evaluation of the Use of a non-contact, 3D scanner for collecting Postmortem fingerprints. Natl Crim Justice Ref Serv. 2016. https://www.ncjrs.gov/pdffiles1/nij/grants/250755.pdf. Accessed Apr 2024.

Kim Y-S, Park H-C, Eom Y-B. The high temperature-moisturizing method for obtaining quality postmortem fingerprints from decomposed fingers. J Exp Biomed Sci. 2007;13:369–74.

Google Scholar 

Uhle AJ, Leas RL. The boiling technique: a method for obtaining quality postmortem impressions from deteriorating friction ridge skin. J Forensic Identif. 2007;57:358–69.

Google Scholar 

Tomboc R, Schrader M. Obtaining fingerprint and palmprint impressions from decomposed bodies or burn victims using the Mikrosil Casting Method. J Forensic Identif. 2005;55:471–9.

Google Scholar 

Massey S, Kroon P. Fingertips: the use of Mikrosil casting putty to obtain fingerprint impressions from a mummified hand. Identif Can. 2010;33(2):66–70.

Rutty GN, Stringer K, Turk EE. Electronic fingerprinting of the dead. Int J Legal Med. 2008;122:77–80.

Article  CAS  PubMed  Google Scholar 

Garrett R. Printing decomps: Livescan and Digital Fingerprint systems Streamline identifying the deceased. Law Enforc Technol. 2006;33:22–32.

Google Scholar 

Darlow LN, Connan J. Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction. J Electron Imaging. 2015;24: 063014. https://doi.org/10.1117/1.jei.24.6.063014.

Article  Google Scholar 

Liu F, Liu G, Zhao Q, Shen L. Robust and high-security fingerprint recognition system using optical coherence tomography. Neurocomputing. 2020;402:14–28. https://doi.org/10.1016/j.neucom.2020.03.102.

Article  Google Scholar 

Darlow LN, Connan J. Efficient internal and surface fingerprint extraction and blending using optical coherence tomography. Appl Opt. 2015;54: 9258. https://doi.org/10.1364/ao.54.009258.

Article  PubMed  Google Scholar 

Adabi S, Hosseinzadeh M, Noei S, Conforto S, Daveluy S, Clayton A, et al. Universal in vivo Textural Model for Human skin based on Optical Coherence Tomograms. Sci Rep. 2017;7:1–11. https://doi.org/10.1038/s41598-017-17398-8.

Article  CAS  Google Scholar 

Pierce MC, Strasswimmer J, Hyle Park B, Cense B, de Boer JF. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt. 2004;9:287. https://doi.org/10.1117/1.1645797.

Article  PubMed  Google Scholar 

Pircher M, Goetzinger E, Leitgeb R, Hitzenberger CK. Three dimensional polarization sensitive OCT of human skin in vivo. Opt Express. 2004;12: 3236. https://doi.org/10.1364/opex.12.003236.

Article  PubMed  Google Scholar 

Auksorius E, Raja KB, Topcu B, Ramachandra R, Busch C, Boccara CA. Compact and Mobile full-field Optical Coherence Tomography Sensor for Subsurface Fingerprint Imaging. IEEE Access. 2020;8:15194–204. https://doi.org/10.1117/1.jbo.22.9.096002.

Article  Google Scholar 

Auksorius E, Boccara AC. Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera. J Biomed Opt. 2017;22(9):1–8. https://doi.org/10.1117/1.JBO.22.9.096002.

Article  PubMed  Google Scholar 

Aum J, Kim JH, Jeong J. Live acquisition of internal fingerprint with automated detection of subsurface layers using OCT. IEEE Photonics Technol Lett. 2016;28:163–6. https://doi.org/10.1109/LPT.2015.2487962.

Article  CAS  Google Scholar 

Bossen A, Lehmann R, Meier C. Internal Fingerprint Identification with Optical Coherence Tomography. IEEE Photonics Technol Lett. 2010;22:507–9. https://doi.org/10.1109/LPT.2010.2041347.

Article  Google Scholar 

Wang H, Ma L, Chen P. External and internal fingerprint extraction based on optical coherence tomography. 2018;77. https://doi.org/10.1117/12.2500446.

Wang H, Yang X, Chen P, Ding B, Liang R, Liu Y. Acquisition and extraction of surface and internal fingerprints from optical coherence tomography through 3D fully convolutional network. Optik (Stuttg). 2020;205: 164176. https://doi.org/10.1016/j.ijleo.2020.164176.

Article  CAS  Google Scholar 

Oostra R-J, Gelderman T, Groen WJM, Uiterdijk HG, Cammeraat ELH, Krap T, et al. Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology (ARISTA) - a taphonomic research facility in the Netherlands for the study of human remains. Forensic Sci Int [Internet]. 2020;317:110483. https://doi.org/10.1016/j.forsciint.2020.110483.

Article  PubMed  Google Scholar 

D’Errico J. Surface Fitting using gridfit. Mathworks Central file Exchange; 2021; https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit. Accessed Apr 2021.

Tabassi E, Wilson C, Watson C. Fingerprint Image Quality. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD; 2004; https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905710. Accessed Sept 2024.

Mazlin V, Irsch K, Paques M, Fink M, Claude Boccara A. Curved-field optical coherence tomography: large-field imaging of human corneal cells and nerves. arXiv. 2020;7. https://doi.org/10.1364/optica.396949.

留言 (0)

沒有登入
gif