Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr. 2017;9:1–12. https://doi.org/10.1186/S13098-017-0254-9.
Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis. 2013;3:93–102. https://doi.org/10.1016/S2222-1808(13)60052-3.
Article PubMed Central Google Scholar
Patel B, Ghate M. Computational studies on structurally diverse Dipeptidyl Peptidase IV inhibitors: an approach for new antidiabetic drug development. Med Chem Res. 2013;22:4505–21. https://doi.org/10.1007/S00044-012-0455-6.
Bibi S, Kulsoom S, Rashid H. In silico approach for lead identification and optimization of antidiabetic compounds. IOSR J Pharm Biol Sci, IOSR-JPBS. 2013;7:36–46. https://www.iosrjournals.org/iosr-jpbs/papers/Vol7-issue3/G0733646.pdf.
Neustadt J, Pieczenik SR. Medication-induced mitochondrial damage and disease. Mol Nutr Food Res. 2008;52:780–8. https://doi.org/10.1002/MNFR.200700075.
Article CAS PubMed Google Scholar
Shehadeh MB, Suaifan GARY, Abu-Odeh AM. Plants secondary metabolites as blood glucose-lowering molecules. Molecules. 2021;26:4333. https://doi.org/10.3390/MOLECULES26144333.
Article CAS PubMed PubMed Central Google Scholar
Matteucci E, Giampietro O. Dipeptidyl Peptidase-4 inhibition: linking chemical properties to clinical safety. Curr Med Chem. 2011;18:4753–60. https://doi.org/10.2174/092986711797535290.
Article CAS PubMed Google Scholar
Nag S, Mandal S, Mukherjee O, Mukherjee S, Kundu R. DPP-4 inhibitors as a savior for COVID-19 patients with diabetes. Future Virol. 2023;18:321–33. https://doi.org/10.2217/FVL-2022-0112.
Mohanty I, Kumar S, Rajesh S. Dipeptidyl Peptidase IV inhibitory activity of berberine and mangiferin: an in silico approach. Int J Clin Endocrinol Metab. 2017;3:018–22. https://doi.org/10.17352/IJCEM.000024.
Bhutani R, Pathak DP, Kapoor G, Husain A, Kant R, Iqbal MA. Synthesis, molecular modelling studies and ADME prediction of benzothiazole clubbed oxadiazole-Mannich bases, and evaluation of their anti-diabetic activity through in vivo model. Bioorg Chem. 2018;77:6–15. https://doi.org/10.1016/J.BIOORG.2017.12.037.
Article CAS PubMed Google Scholar
Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S. In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J Theor Biol. 2016;391:95–101. https://doi.org/10.1016/J.JTBI.2015.12.004.
Article CAS PubMed Google Scholar
Dzoyem JP, Nganteng DND, Melong R, Wafo P, Ngadjui B, Allémann E, Delie F. Bioguided identification of pentacyclic triterpenoids as anti-inflammatory bioactive constituents of Ocimum gratissimum extract. J Ethnopharmacol. 2021;268: 113637. https://doi.org/10.1016/J.JEP.2020.113637.
Article CAS PubMed Google Scholar
Effraim KD, Jacks TW, Sodipo OA. Histopathological studies on the toxicity of Ocimum gratissimumleave extract on some organs of rabbit. Afr J Biomed Res. 2003;6:21–5. https://doi.org/10.4314/AJBR.V6I1.54018.
Ezuruike UF, Prieto JM. The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. J Ethnopharmacol. 2014;155:857–924. https://doi.org/10.1016/J.JEP.2014.05.055.
Article CAS PubMed Google Scholar
Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: a review. Planta Med. 2014;80:354–77. https://doi.org/10.1055/S-0033-1360335.
Article CAS PubMed Google Scholar
Onwueme I, Charles WB. Tropical root and tuber crops: production, perspectives and future prospects, 1994. https://books.google.co.in/books?id=vHprLAOlOkYC&redir_esc=y.
Eleazu CO, Iroaganachi M, Eleazu KC. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats. J Diabetes Res. 2013;2013:160964. https://doi.org/10.1155/2013/160964.
Article CAS PubMed PubMed Central Google Scholar
Niba LL. Processing effects on susceptibility of starch to digestion in some dietary starch sources. Int J Food Sci Nutr. 2003;54:97–109. https://doi.org/10.1080/0963748031000042038.
Article CAS PubMed Google Scholar
Makkar HPS, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol. 2009;111:773–87. https://doi.org/10.1002/EJLT.200800244.
Giovannini P, Howes MJR, Edwards SE. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: a review. J Ethnopharmacol. 2016;184:58–71. https://doi.org/10.1016/J.JEP.2016.02.034.
Abass OA, Timofeev VI, Sarkar B, Onobun DO, Ogunsola SO, Aiyenuro AE, Aborode AT, Aigboje AE, et al. Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J Biomol Struct Dyn. 2022;40:7283–302. https://doi.org/10.1080/07391102.2021.1896387.
Article CAS PubMed Google Scholar
Aborode AT, Awuah WA, Mikhailova T, Rahman TA, Pavlock S, Kundu M, Yarlagadda R, Pustake M, et al. OMICs technologies for natural compounds-based drug development. Curr Top Med Chem. 2022;22:1751–65. https://doi.org/10.2174/1568026622666220726092034.
Article CAS PubMed Google Scholar
Akinwumi IA, Ishola BO, Adeyemo OM, Owojuyigbe AP. Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study. Egypt J Med Hum Genet. 2023;24:1–20. https://doi.org/10.1186/S43042-023-00456-4.
Aziz M, Ejaz SA, Zargar S, Akhtar N, Aborode AT, Wani TA, Batiha GES, Siddique F. Deep learning and structure-based virtual screening for drug discovery against NEK7: a novel target for the treatment of cancer. Molecules. 2022;27:4098. https://doi.org/10.3390/MOLECULES27134098.
Article CAS PubMed PubMed Central Google Scholar
Balogun TA, Chukwudozie OS, Ogbodo UC, Junaid IO, Sunday OA, Ige OM, Aborode AT, Akintayo AD, et al. Discovery of putative inhibitors against main drivers of SARS-CoV-2 infection: insight from quantum mechanical evaluation and molecular modeling. Front Chem. 2022;10: 964446. https://doi.org/10.3389/FCHEM.2022.964446.
Article CAS PubMed PubMed Central Google Scholar
Ejaz SA, Alsfouk AA, Batiha GES, Aborode AT, Ejaz SR, Umar HI, Aziz M, Saeed A, et al. Identification of N-(4-acetyl-4,5-dihydro-5-(7,8,9-substituted-tetrazolo[1,5-a]-quinolin-4-yl)-1,3,4-thiadiazol-2-yl) acetamide derivatives as potential caspase-3 inhibitors via detailed computational investigations. Struct Chem. 2023;34:425–38. https://doi.org/10.1007/S11224-022-01986-0.
Rao MMV. Hariprasad TPN (2021) in silico analysis of a potential antidiabetic phytochemical erythrin against therapeutic targets of diabetes. In Silico Pharm. 2021;9:1–12. https://doi.org/10.1007/S40203-020-00065-8.
Daina A, Michielin O. Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Reports. 2017;7:1–13. https://doi.org/10.1038/srep42717.
Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski’s rule of five. Int J Pharm. 2018;549:133–49. https://doi.org/10.1016/J.IJPHARM.2018.07.046.
Article CAS PubMed Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17. https://doi.org/10.1016/J.ADDR.2012.09.019.
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. https://doi.org/10.1002/JCC.21334.
留言 (0)