Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 2012;30(2):174–8. https://doi.org/10.1038/nbt.2095.
Article CAS PubMed Google Scholar
de Abreu-Neto JB, Turchetto-Zolet AC, de Oliveira LF, Bodanese Zanettini MH, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 2013;280(7):1604–16. https://doi.org/10.1111/febs.12159.
Article CAS PubMed Google Scholar
Andrews S. Fast QC. A quality control tool for high throughput sequence data. 2010; Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Anonymous. Area and production of horticultural crops (2021–22). National Horticultural Board. 2022; www.nhb.gov.in
Barilli E, Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D. A high-density integrated DArTseq SNP-based genetic map of Pisum fulvum and identification of QTLs controlling rust resistance. Front Plant Sci. 2018;9:167. https://doi.org/10.3389/fpls.2018.00167.
Article PubMed PubMed Central Google Scholar
Barilli E, Sillero JC, Fernández-Aparicio M, Rubiales D. Identification of resistance to Uromyces pisi (Pers.) Wint. in Pisum spp. germplasm. Field Crops Res. 2009;114(2):198–203. https://doi.org/10.1016/j.fcr.2009.07.017.
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of chromatin architecture in plant stress responses: an update. Front Plant Sci. 2021;12(11): 603380. https://doi.org/10.3389/fpls.2020.603380.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article CAS PubMed PubMed Central Google Scholar
Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res. 2015;22(3):193–203. https://doi.org/10.1093/dnares/dsv004.
Article CAS PubMed PubMed Central Google Scholar
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol. 2017;52(4):425–60. https://doi.org/10.1080/10409238.2017.1325829.
Article CAS PubMed PubMed Central Google Scholar
Emeran AA, Sillero JC, Niks RE, Rubiales D. Infection structures of host specialized isolates of Uromyces viciae-fabae and of other Uromyces infecting leguminous crops. Plant Diseases. 2005;89(1):17–22. https://doi.org/10.1094/PD-89-0017.
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H. MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS ONE. 2013;8(7):e68529. https://doi.org/10.1371/journal.pone.0068529.
Article CAS PubMed PubMed Central Google Scholar
Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol. 2003;131(3):872–7. https://doi.org/10.1104/pp.017004.
Article CAS PubMed PubMed Central Google Scholar
Huang G, Hu Y, Li F, Zuo X, Wang X, Li F, Li R. Genome-wide characterization of heavy metal-associated isoprenylated plant protein gene family from Citrus sinensis in response to huanglongbing. Front Plant Sci. 2024;27(15):1369883. https://doi.org/10.3389/fpls.2024.1369883.
Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet. 2015;128(7):1329–42. https://doi.org/10.1007/s00122-015-2509-x.
Klein M, Burla B, Martinoia E. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett. 2006;580(4):1112–22. https://doi.org/10.1016/j.febslet.2005.11.056.
Article CAS PubMed Google Scholar
Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo CJ, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar’an B, Bendahmane A, Aury JM, Batley J, Le Paslier MC, Ellis N, Warkentin TD, Coyne CJ, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51(9):1411–22. https://doi.org/10.1038/s41588-019-0480-1.
Article CAS PubMed Google Scholar
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article CAS PubMed PubMed Central Google Scholar
Lejeune E, Bortfeld M, White SA, Pidoux AL, Ekwall K, Allshire RC, Ladurner AG. The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi. Curr Biol. 2007;17(14):1219–24. https://doi.org/10.1016/j.cub.2007.06.028.
Article CAS PubMed PubMed Central Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
Link T, Seibel C, Voegele RT. Early insights into the genome sequence of Uromyces fabae. Frontier in Plant Sciences. 2014;5:587–91. https://doi.org/10.3389/fpls.2014.00587.
Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet. 2014;127(7):1491–9. https://doi.org/10.1007/s00122-014-2313-z.
Mansfeld BN, Grumet R. QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genome. 2018;11(2):180006. https://doi.org/10.3835/plantgenome2018.01.0006.
Mayee CD, Datar VV. Phytopathometry, Technical Bulletin-1 (Special Bulletin 3), Marathwada Agriculture University, Parbhani. 1986; Pp218.
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Ann Rev Phytopathol. 2013;51:245–66.
Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991;88(21):9828–32. https://doi.org/10.1073/pnas.88.21.9828.
Article CAS PubMed PubMed Central Google Scholar
Rai R, Singh AK, Chand R, Srivastava CP, Joshi AK, Singh BD. Genomic regions controlling components of resistance for pea rust caused by Uromyces fabae (Pers.) de-Bary. J Plant Biochem Biotechnol. 2017;25:133–41. https://doi.org/10.1007/s13562-015-0318-6.
Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP. Molecular mapping for resistance to pea rust caused by uromyces fabae (Pers.) de-Bary. Theoritical Appl Genet. 2011;123(5):803–13. https://doi.org/10.1007/s00122-011-1628-2.
Sanger RBS, Singh VK. Effect of showing dates and pea variety on severity of rust and powdery mildew. Indian J Agric Sci. 1994;74:166–7.
Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet. 2014;15(10):662–76. https://doi.org/10.1038/nrg3745.
Article CAS PubMed Google Scholar
Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci. 2016;8(7):806. https://doi.org/10.3389/fpls.2016.00806.
Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D. Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica. 2006;147(1–2):255–72. https://doi.org/10.1007/s10681-006-6544-1.
Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T. QTL-seq for rapid identification of candidate genes
留言 (0)