Numerical Simulation of InP and MXene-Based SPR Sensor for Different Cancerous Cells Detection

Bernstein W. B. (2020), Cancer in the tropics, in Hunter’s Tropical Medicine and Emerging Infectious Diseases, Elsevier, pp. 178–188.

Pourmadadi, M., Soleimani Dinani, H., Saeidi Tabar, F., Khassi, K., Janfaza, S., Tasnim, N., & Hoorfar, M. (2022). Properties and applications of graphene and its derivatives in biosensors for cancer detection: A comprehensive review. Biosensors, 12(5), 269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhary V. S., Kumar D., & Kumar S. (2022). Au-TiO2 coated photonic crystal fiber based SPR refractometric sensor for detection of cancerous cells, IEEE Transactions on NanoBioscience. https://doi.org/10.1109/TNB.2022.3219104.

Hossain, M. B., Islam, M. M., Abdulrazak, L. F., Rana, M. M., Akib, T., & Hassan, M. (2019). Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: A numerical design-based analysis. Photonic Sensors, 10, 67–79. https://doi.org/10.1007/s13320-019-0556-7.

Article  CAS  Google Scholar 

Karki, B., Sarkar, P., Dhiman, G., Srivastava, G., & Kumar, M. (2023). Platinum diselenide and graphene-based refractive index sensor for cancer detection. Plasmonics, 19, 1–10.

Google Scholar 

Iqbal, M. J., Javed, Z., Herrera-Bravo, J., Sadia, H., Anum, F., Raza, S., Tahir, A., Shahwani, M. N., Sharifi-Rad, J., Calina, D., & Cho, W. C. (2022). Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell International, 22(1), 354. https://doi.org/10.1186/s12935-022-02777-7.

Article  PubMed  PubMed Central  Google Scholar 

Ansari, G., Pal, A., Srivastava, A. K., & Verma, G. (2024). Bi-metallic, ferric oxide, and carbon nanotube-assisted SPR sensor for cancer detection. Journal of Materials Research, 39, 1–12.

Article  Google Scholar 

Homola, J., Koudela, I., & Yee, S. S. (1999). Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Sensors and Actuators B: Chemical, 54(1), 16–24. https://doi.org/10.1016/S0925-4005(98)00322-0.

Article  CAS  Google Scholar 

Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528–539. https://doi.org/10.1007/s00216-003-2101-0.

Article  CAS  PubMed  Google Scholar 

Mitu, S. A. (2022). Surface Plasmon resonance based refractive index biosensor: A external sensing approach. Plasmonics, 17, 1581–1592.

Article  CAS  Google Scholar 

Tamang, J. S., Dhar, R. S., Bhoi, A. K., Singh, A. K., & Chatterjee, S. (2021). Bio-sensing application of chalcogenide thin film in a graphene-based surface plasmon resonance (SPR) sensor. Sādhanā, 46(3), 120.

Article  CAS  Google Scholar 

Tamang, J. S., Chatterjee, S., & Dhar, R. S. (2023). Defects detection in dentistry: Designing a graphene multilayered based plasmonic sensor. Physica Scripta, 98(6), 65605.

Article  CAS  Google Scholar 

Shakya A. K. and Singh S. (2022), Designing of a novel PCF biosensor having octagonal core and based on SPR for chemical and heavy metal sensing, in 2022 12th International conference on cloud computing, data science & engineering (Confluence), pp. 171–175.

Shakya A. K., & Singh S. (2023), Gold-ZnO coated surface plasmon resonance refractive index sensor based on photonic crystal fiber with tetra core in hexagonal lattice of elliptical air holes, in Robotics, Control and Computer Vision: Select Proceedings of ICRCCV 2022, Springer, pp. 567–576.

Shakya, A. K., & Singh, S. (2022). Design of biochemical biosensor based on transmission, absorbance and refractive index. Biosensors and Bioelectronics: X, 10, 100089.

CAS  Google Scholar 

Rau, S., Hilbig, U., & Gauglitz, G. (2014). Label-free optical biosensor for detection and quantification of the non-steroidal anti-inflammatory drug diclofenac in milk without any sample pretreatment. Analytical and Bioanalytical Chemistry, 406(14), 3377–3386. https://doi.org/10.1007/s00216-014-7755-2.

Article  CAS  PubMed  Google Scholar 

Hma Salah, N., Pal, A., Rasul, H. M., & Uniyal, A. (2024). Sensitivity enhancement of the surface plasmon resonance sensor based on gallium-doped zinc oxide and silicon for cancer detection: A wavelength interrogation approach. Micro and Nanostructures, 186(1), 207736. https://doi.org/10.1016/j.micrna.2023.207736.

Article  CAS  Google Scholar 

Pal, S., Verma, A., Raikwar, S., Prajapati, Y. K., & Saini, J. P. (2018). Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Applied Physics A, 124(5), 394. https://doi.org/10.1007/s00339-018-1804-1.

Article  CAS  Google Scholar 

Shakya, A. K., Ramola, A., Singh, S., & Vidyarthi, A. (2024). Optimized design of plasmonic biosensor for cancer detection: Core configuration and nobel material coating innovation. Plasmonics. https://doi.org/10.1007/s11468-024-02400-7.

Article  Google Scholar 

Shakya, A. K., & Singh, S. (2022). Design of refractive index sensing based on optimum combination of plasmonic materials gold with indium tin oxide/titanium dioxide. Journal of Nanophotonics, 16(2), 26010.

Article  CAS  Google Scholar 

Janith, G. I., Herath, H. S., Hendeniya, N., Attygalle, D., Amarasinghe, D., Logeeshan, V., Wickramasinghe, P., & Wijayasinghe, Y. S. (2023). Advances in surface plasmon resonance biosensors for medical diagnostics: An overview of recent developments and techniques. Journal of Pharmaceutical and Biomedical Analysis Open, 2, 100019.

Article  Google Scholar 

Butt, M. A. (2024). Plasmonic sensors based on a metal–insulator–metal waveguide—what do we know so far? Sensors, 24(22), 7158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou Chau, Y.-F. (2021). Multiple-mode bowtie cavities for refractive index and glucose sensors working in visible and near-infrared wavelength ranges. Plasmonics, 16(5), 1633–1644.

Article  CAS  Google Scholar 

Singh, S., Singh, P. K., Umar, A., Lohia, P., Albargi, H., Castañeda, L., & Dwivedi, D. K. (2020). 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines, 11(8), 1–28. https://doi.org/10.3390/mi11080779.

Article  Google Scholar 

Homola, J. (2006). Electromagnetic theory of surface plasmons. Surface Plasmon Resonance Based Sensors, 4, 3–44. https://doi.org/10.1007/5346_013.

Article  CAS  Google Scholar 

Yang, W., Chou Chau, Y.-F., & Jheng, S.-C. (2013). Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Physics of Plasmas, 20(6), 064503.

Article  Google Scholar 

Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik, 216(4), 398–410. https://doi.org/10.1007/BF01391532.

Article  CAS  Google Scholar 

Kretschmann, E., & Raether, H. (1968). Radiative decay of non-radiative surface plasmons by light. Zeitschrift für Naturforschung, 23(a), 2135–2136.

Article  CAS  Google Scholar 

Singh, L., Vasimalla, Y., Kumar, R., & Pareek, P. (2023). Highly sensitive surface plasmon resonance sensor for refractive index detection of helicobacter pylori. Optik, 274, 170516.

Article  CAS  Google Scholar 

Shah R. S., Singh R. K., & Kumar R. (2024). Development of 2D materials-based surface plasmon resonance biosensor for the detection of healthy and pathological tissues, Plasmonics, 1–10. https://doi.org/10.1007/s11468-024-02608-7.

Kumar R., Shah R. S., Alsubaie A. S., Ben Ali N., Kumar M., & Pal A. (2024). Hafnium diselenide 2D material-based surface plasmon resonance sensor for detection of basal cancer, Plasmonics, 1–10, https://doi.org/10.1007/s11468-024-02518-8.

Kumar, R., Pal, S., Pal, N., Mishra, V., & Prajapati, Y. K. (2021). High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure. Applied Physics A, 127(4), 259. https://doi.org/10.1007/s00339-021-04408-w.

Article  CAS  Google Scholar 

Wu, F., Singh, J., Thomas, P. A., Ge, Q., Kravets, V. G., Day, P. J., & Grigorenko, A. N. (2020). Ultrasensitive and rapid detection of malaria using graphene-enhanced surface plasmon resonance. 2D Materials, 7(4), 045019. https://doi.org/10.1088/2053-1583/aba88e.

Article  CAS  Google Scholar 

De Melo, A. A., Da Silva, T. B., Da Silva Santiago, M. F., Da Silva Moreira, C., & Cruz, R. M. S. (2019). Theoretical analysis of sensitivity enhancement by graphene usage in optical fiber surface plasmon resonance sensors. IEEE Transactions on Instrumentation and Measurement, 68(5), 1554–1560. https://doi.org/10.1109/TIM.2018.2882148.

Article  Google Scholar 

Uniyal A., Gotam S., Ram T., Chauhan B., Jha A., and Pal A., Next generation ultra-sensitive surface plasmon resonance biosensors, in International Conference on Machine Learning, Image Processing, Network Security and Data Sciences, 2022, pp. 353–361.

Pal D., Gupta R., Uniyal A., Shome S., Kumar M., Dhiman G., Alarifi A., Chauhan S. S., Kumar A., Pal A., Ahmed M. Z. (2024), A high sensitivity refractive index based sensor for detection of acetone concentration in wastewater, Plasmonics, 1–11, https://doi.org/10.1007/s11468-024-02699-2

Singh, P. (2016). Sensors and actuators B: chemical SPR biosensors: Historical perspectives and current challenges. Sensors and Actuators B: Chemical, 229, 110–130. https://doi.org/10.1016/j.snb.2016.01.118.

Article  CAS  Google Scholar 

Singh, M. K., Pal, S., Prajapati, Y. K., & Saini, J. P. (2020). Sensitivity improvement of surface plasmon resonance sensor on using BlueP/MoS 2 heterostructure and antimonene. IEEE Sensors Letters, 4(7), 1–4. https://doi.org/10.1109/LSENS.2020.3005942.

Article  Google Scholar 

Srivastava, A. (2021). Surface plasmon resonance (SPR) -based biosensor using MXene as a BRE layer and magnesium oxide (MgO) as an adhesion layer. Journal of Materials Science: Materials in Electronics, 33, 8519–8528. https://doi.org/10.1007/s10854-021-06436-x.

Article  CAS  Google Scholar 

Kumar, R., Pal, S., Prajapati, Y. K., & Saini, J. P. (2021). Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. Silicon, 13, 1887–1894. https://doi.org/10.1007/s12633-020-00558-3.

留言 (0)

沒有登入
gif