Adamczack J, Hoffmann M, Papke U, Haufschildt K, Nicke T, Bröring M, Sezer M, Weimar R, Kuhlmann U, Hildebrandt P, Layer G (2014) NirN protein from Pseudomonas aeruginosa is a novel electron-bifurcating dehydrogenase catalyzing the last step of heme d1 biosynthesis. J Biol Chem 289(44):30753–30762. https://doi.org/10.1074/jbc.M114.603886
Almeida J, Reis M, Carrondo M (1995) Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol Bioeng 46(5):476–484. https://doi.org/10.1002/bit.260460512
Andoralov V, Shleev S, Dergousova N, Kulikova O, Popov V, Tikhonova T (2021) Octaheme nitrite reductase: the mechanism of intramolecular electron transfer and kinetics of nitrite bioelectroreduction. Bioelectrochemistry 138:107699. https://doi.org/10.1016/j.bioelechem.2020.107699
Andrade SL, Einsle O (2007) The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol 24(5–6):357–365. https://doi.org/10.1080/09687680701388423
Angove HC, Cole JA, Richardson DJ, Butt JN (2002) Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome c nitrite reductase. J Biol Chem 277(26):23374–23381. https://doi.org/10.1074/jbc.M200495200
Baas P, Knoepp JD, Mohan JE (2019) Well-aerated southern appalachian forest soils demonstrate significant potential for gaseous nitrogen loss. Forests 10:1155. https://doi.org/10.3390/f10121155
Bai XL, Zhang ZB, Cui JJ, Liu ZJ, Chen ZJ, Zhou JB (2020) Strategies to mitigate nitrate leaching in vegetable production in China: a meta-analysis. Environ Sci Pollut Res Int 27(15):18382–18391. https://doi.org/10.1007/s11356-020-08322-1
Bali S, Warren MJ, Ferguson SJ (2010) Nirf is a periplasmic protein that binds d1 heme as part of its essential role in d1 heme biogenesis. FEBS J 277(23):4944–4955. https://doi.org/10.1111/j.1742-4658.2010.07899.x
Battye W, Aneja VP, Schlesinger WH (2017) Is nitrogen the next carbon? Earth’s Fut 5(9):894–904. https://doi.org/10.1002/2017EF000592
Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NCJ (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Mol Biol 10(9):681–687. https://doi.org/10.1038/nsb969
Bindraban PS, Dimkpa CO, White JC, Franklin FA, Melse-Boonstra A, Koele N, Pandey R, Rodenburg J, Senthilkumar K, Demokritou P, Schmidt S (2020) Safeguarding human and planetary health demands a fertilizer sector transformation. PLANTS, PEOPLE, PLANET 2(4):302–309. https://doi.org/10.1002/ppp3.10098
Borrero De Acuña JM, Timmis KN, Jahn M, Jahn D (2017) Protein complex formation during denitrification by Pseudomonas aeruginosa. Microb Biotechnol 10(6):1523–1534. https://doi.org/10.1111/1751-7915.12851
Bulusu S, García CP, Dahlke HE, Levintal E (2024) Technical note: an open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water. Biogeosciences 21(12):3007–3013. https://doi.org/10.5194/bg-21-3007-2024
Burlat B, Gwyer JD, Poock S, Clarke T, Cole JA, Hemmings AM, Cheesman MR, Butt JN, Richardson DJ (2005) Cytochrome c nitrite reductase: from structural to physicochemical analysis. Biochem Soc Trans 33(1):137–140. https://doi.org/10.1042/BST0330137
Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162(2):145–173. https://doi.org/10.1111/aab.12014
Chen Y, Zhou W, Li Y, Zhang J, Zeng G, Huang A, Huang J (2014) Nitrite reductase genes as functional markers to investigate diversity of denitrifying bacteria during agricultural waste composting. Appl Microbiol Biotechnol 98(9):4233–4243. https://doi.org/10.1007/s00253-014-5514-0
Chen Z, Wang CH, Gschwendtner S, Willibald G, Unteregelsbacher S, Lu HY, Kolar A, Schloter M, Butterbach BK, Dannenmann M (2015) Relationships between denitrification gene expression, dissimilatory nitrate reduction to ammonium and nitrous oxide and dinitrogen production in montane grassland soils. Soil Biol Biochem 87:67–77. https://doi.org/10.1016/j.soilbio.2015.03.030
Cheng Y, Elrys AS, Merwad AM, Zhang H, Chen Z, Zhang J, Cai Z, Müller C (2022) Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environ Sci Technol 56(6):3791–3800. https://doi.org/10.1021/acs.est.1c07997
Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Lett 63(3):223–234. https://doi.org/10.1016/0378-1097(89)90132-8
Clarke TA, Dennison V, Seward HE, Burlat B, Cole JA, Hemmings AM, Richardson DJ (2004) Purification and spectropotentiometric characterization of Escherichia coli Nrfb, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex. J Biol Chem 279(40):41333–41339. https://doi.org/10.1074/jbc.M407604200
Clarke TA, Kemp GL, Wonderen JHV, Doyle RAS, Cole JA, Tovell N, Cheesman MR, Butt JN, Richardson DJ, Hemmings AM (2008) Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase. Biochemistry 47(12):3789–3799. https://doi.org/10.1021/bi702175w
Coelho C, Romão MJ (2015) Structural and mechanistic insights on nitrate reductases. Protein Sci 24(12):1901–1911. https://doi.org/10.1002/pro.2801
Cole JA, Wimpenny JWT (1968) Metabolic pathways for nitrate reduction in Escherichia coli. Biochim Biophys Acta Bioenerg 162(1):39–48. https://doi.org/10.1016/0005-2728(68)90212-0
Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Ecology controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015. https://doi.org/10.1126/science.1167755
Cunha CA, Macieira S, Dias JM, Almeida G, Gonçalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romão MJ (2003) Cytochrome c nitrite reductase from Desulfovibrio desulfuricans atcc 27774: the relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). J Biol Chem 278(19):17455–17465. https://doi.org/10.1074/jbc.M211777200
Cutruzzola F, Brown K, Wilson EK, Bellelli A, Arese M, Tegoni M, Cambillau C, Brunori M (2001) The nitrite reductase from Pseudomonas aeruginosa: essential role of two active-site histidines in the catalytic and structural properties. Proc Natl Acad Sci USA 98(5):2232–2237. https://doi.org/10.1073/pnas.041365298
Deng F, Hou L, Liu M, Zheng Y, Yin G, Li X, Lin X, Chen F, Gao J, Jiang X (2015) Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the yangtze estuary. J Geophys Res Biogeosci 120(8):1521–1531. https://doi.org/10.1002/2015JG003007
Deng D, He G, Ding B, Liu W, Yang Z, Ma L (2024) Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems. Glob Chang Biol 30(3):e17256. https://doi.org/10.1111/gcb.17256
Denkhaus L, Siffert F, Einsle O (2023) An unusual active site architecture in cytochrome c nitrite reductase NrfA-1 from geobacter metallireducens. FEMS Microbiol Lett 370:fnad68. https://doi.org/10.1093/femsle/fnad068
Di Capua F, Pirozzi F, Lens PNL, Esposito G (2019) Electron donors for autotrophic denitrification. Chem Eng J 362:922–937. https://doi.org/10.1016/j.cej.2019.01.069
Dong Y, Yuan H, Zhang R, Zhu N (2019) Removal of ammonia nitrogen from wastewater: a review. Trans ASABE 62(6):1767–1778. https://doi.org/10.13031/trans.13671
Einsle O (2011) Chapter sixteen-structure and function of formate-dependent cytochrome c nitrite reductase, NrfA. Methods Enzymol 496:399–422. https://doi.org/10.1016/B978-0-12-386489-5.00016-6
Einsle O, Stach P, Messerschmidt A, Simon J, Kröger A, Huber R, Kroneck PMH (2000) Cytochrome c nitrite reductase from Wolinella succinogenes: structure at 1.6 å resolution, inhibitor binding, and heme-packing motifs. J Biol Chem 275(50):39608–39616. https://doi.org/10.1074/jbc.M006188200
留言 (0)