Chemical interactions under the bark: bark-, ambrosia-, and wood-boring beetles and their microbial associates

Adams A, Six D (2007) Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae). Environ Entomol 36:64–72. https://doi.org/10.1093/ee/36.1.64

Article  Google Scholar 

Adams A, Six D, Adams S, Holben W (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microbial Ecol 56:460–466. https://doi.org/10.1007/s00248-008-9364-0

Article  Google Scholar 

Adams A, Currie C, Cardoza Y, Klepzing K, Raffa K (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J Forest Res 39:1133–1147. https://doi.org/10.1139/X09-034

Article  CAS  Google Scholar 

Adams A, Boone CK, Bohlmann J, Raffa KF (2011) Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J Chem Ecol 37:808–817. https://doi.org/10.1007/s10886-011-9992-6

Article  CAS  Google Scholar 

Agbulu V, Zaman R, Ishagulyyva G, Cahill JF, Erbilgin N (2022) Host defense metabolites alter the interactions between a bark beetle and its symbiotic fungi. Microb Ecol 84:834–843. https://doi.org/10.1007/s00248-021-01894-6

Article  CAS  Google Scholar 

Alayon O, Tsui C, Feau N, Capron A, Dhillon B, Zhang Y, Massoumi AS, Boone C, Carroll A, Cooke J, Roe A, Sperling F, Hamelin R (2017) Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol Ecol 26:2077–2091. https://doi.org/10.1111/mec.14074

Article  CAS  Google Scholar 

Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150. https://doi.org/10.1007/s00049-004-0277-1

Article  CAS  Google Scholar 

Ankrah NYD, Wilkers RA, Zhang FQ, Aristilde L, Douglas AE (2020) The metabolome of associations between xylem-feeding insects and their bacterial symbionts. J Chem Ecol 46:735–744. https://doi.org/10.1007/s10886-019-01136-7

Article  CAS  Google Scholar 

Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14:1300–1312. https://doi.org/10.1111/j.1461-0248.2011.01697.x

Article  Google Scholar 

Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6:e24587. https://doi.org/10.1371/journal.pone.0024587

Article  CAS  Google Scholar 

Avtzis D, Lakatos F (2021) Bark and wood boring insects- past, present and the future knowledge we need. InSects 12:28. https://doi.org/10.3390/insects12010028

Article  Google Scholar 

Ayeaee P, Rosa C, Ferry JG, Felton G, Saunders M, Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environ Entomol 43:903–912. https://doi.org/10.1603/EN14045

Article  Google Scholar 

Baldrian P, López-Mondéjar R, Kohout P (2023) Forest microbiome and global change. Nat Review Microbiol 21:487–501. https://doi.org/10.1038/s41579-023-00876-4

Article  CAS  Google Scholar 

Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613. https://doi.org/10.1525/bio.2010.60.8.6

Article  Google Scholar 

Biedermann PHW, Klepzig KD, Taborsky M, Six DL (2013) Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiol Ecol 83:711–723. https://doi.org/10.1111/1574-6941.12026

Article  CAS  Google Scholar 

Biedermann PHW, De Fine LH, Rohlfs M (2019) Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol. https://doi.org/10.1016/J.FUNECO.2018.11.010

Article  Google Scholar 

Biswas T, Yuvaraj JK, Hansson BS, Anderbrant LC, O, Andersson MN. (2023) Characterization of olfactory sensory neurons in the striped ambrosia beetle Trypodendron lineatum. Front Physiol 14:1155129. https://doi.org/10.3389/fphys.2023.1155129

Article  Google Scholar 

Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712. https://doi.org/10.1016/j.ibmb.2010.07.013

Article  CAS  Google Scholar 

Blomquist GJ, Tittiger C, Maclean M, Keeling CI (2021) Cytochromes P450: terpene detoxification and pheromone production in bark beetles. Curr Opin Insect Sci 43:97–102. https://doi.org/10.1016/j.cois.2020.11.010

Article  Google Scholar 

Boone CK, Keefover- Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006. https://doi.org/10.1007/s10886-013-0313-0

Article  CAS  Google Scholar 

Bykov R, Kerchev I, Demenkova M, Ryabinin A, Ilinsky Y (2020) Sex-specific Wolbachia infection patterns in populations of Polygraphus proximus Blandford (Coleoptera; Curculionidae: Scolytinae). InSects 11:547. https://doi.org/10.3390/insects11080547

Article  Google Scholar 

Cachapa JC, Meyling NV, Burow M, Hauser TP (2021) Induction and priming of plant defense by root-associated insect-pathogenic fungi. J Chem Ecol 47:112–122. https://doi.org/10.1007/s10886-020-01234-x

Article  CAS  Google Scholar 

Cale J, Collignon R, Klutsch J, Kanekar S, Hussain A, Erbilgin N (2016) Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS ONE 11:e0162197. https://doi.org/10.1371/journal.pone.0162197

Article  CAS  Google Scholar 

Cale J, Ding R, Wang F, Rajabzadeh R, Erbilgin N (2019a) Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds. Fungal Ecol 39:285–295. https://doi.org/10.1016/j.funeco.2019.01.003

Article  Google Scholar 

Cale J, Klutsch J, Dykstra C, Peters B, Erbilgin N, Plomion C (2019b) Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species. Tree Physiol 39:1121–1135. https://doi.org/10.1093/treephys/tpz012

Article  CAS  Google Scholar 

Cambronero-Heinrichs J, Battisti A, Biedermann P, Cavaletto G, Castro-Gutierrez V, Favaro L, Santoeimma G, Rassati D (2023) Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol Ecol 99:1–11. https://doi.org/10.1093/femsec/fiad144

Article  CAS  Google Scholar 

Cao Q, Wickham JD, Chen L, Ahmad F, Lu M, Sun J (2018) Effect of oxygen on verbenone conversion from cis-verbenol by gut facultative anaerobes of Dendroctonus valens. Front Microbiol 9:464. https://doi.org/10.3389/fmicb.2018.00464

Article  Google Scholar 

Cao Q, Koski T-M, Li H, Zhang C, Sun J (2022) The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. Insect Sci 30:459–472. https://doi.org/10.1111/1744-7917.13101

Article  CAS  Google Scholar 

Cao Q, Zhao Y, Koski T-M, Li H, Sun J (2023) Effects of simulated gut pH environment on bacterial composition and pheromone production of Dendroctonus valens. Insect Sci. https://doi.org/10.1111/1744-7917.13210

Article  Google Scholar 

Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645. https://doi.org/10.1111/j.1365-2311.2006.00829.x

Article  Google Scholar 

Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D (2023) The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1224096

Article  Google Scholar 

Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2013) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62. https://doi.org/10.1111/ppa.12073

Article  Google Scholar 

Ceja-Navarro J, Vega F, Karouz U, Hao Z, Jenkins S, Lim H, Kosina P, Infante F, Northen T, Brodie E (2016) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618. https://doi.org/10.1038/s41467-023-42217-2

Article  CAS  Google Scholar 

Chakraborty A, Asharaf MZ, Modlinger R, Synek J, Schlyter F, Roy A (2020) Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci Rep 10:18572. https://doi.org/10.1038/s41598-020-75203-5

Article  CAS 

留言 (0)

沒有登入
gif