Adams A, Six D (2007) Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae). Environ Entomol 36:64–72. https://doi.org/10.1093/ee/36.1.64
Adams A, Six D, Adams S, Holben W (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microbial Ecol 56:460–466. https://doi.org/10.1007/s00248-008-9364-0
Adams A, Currie C, Cardoza Y, Klepzing K, Raffa K (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J Forest Res 39:1133–1147. https://doi.org/10.1139/X09-034
Adams A, Boone CK, Bohlmann J, Raffa KF (2011) Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J Chem Ecol 37:808–817. https://doi.org/10.1007/s10886-011-9992-6
Agbulu V, Zaman R, Ishagulyyva G, Cahill JF, Erbilgin N (2022) Host defense metabolites alter the interactions between a bark beetle and its symbiotic fungi. Microb Ecol 84:834–843. https://doi.org/10.1007/s00248-021-01894-6
Alayon O, Tsui C, Feau N, Capron A, Dhillon B, Zhang Y, Massoumi AS, Boone C, Carroll A, Cooke J, Roe A, Sperling F, Hamelin R (2017) Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol Ecol 26:2077–2091. https://doi.org/10.1111/mec.14074
Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150. https://doi.org/10.1007/s00049-004-0277-1
Ankrah NYD, Wilkers RA, Zhang FQ, Aristilde L, Douglas AE (2020) The metabolome of associations between xylem-feeding insects and their bacterial symbionts. J Chem Ecol 46:735–744. https://doi.org/10.1007/s10886-019-01136-7
Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14:1300–1312. https://doi.org/10.1111/j.1461-0248.2011.01697.x
Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6:e24587. https://doi.org/10.1371/journal.pone.0024587
Avtzis D, Lakatos F (2021) Bark and wood boring insects- past, present and the future knowledge we need. InSects 12:28. https://doi.org/10.3390/insects12010028
Ayeaee P, Rosa C, Ferry JG, Felton G, Saunders M, Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environ Entomol 43:903–912. https://doi.org/10.1603/EN14045
Baldrian P, López-Mondéjar R, Kohout P (2023) Forest microbiome and global change. Nat Review Microbiol 21:487–501. https://doi.org/10.1038/s41579-023-00876-4
Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613. https://doi.org/10.1525/bio.2010.60.8.6
Biedermann PHW, Klepzig KD, Taborsky M, Six DL (2013) Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiol Ecol 83:711–723. https://doi.org/10.1111/1574-6941.12026
Biedermann PHW, De Fine LH, Rohlfs M (2019) Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol. https://doi.org/10.1016/J.FUNECO.2018.11.010
Biswas T, Yuvaraj JK, Hansson BS, Anderbrant LC, O, Andersson MN. (2023) Characterization of olfactory sensory neurons in the striped ambrosia beetle Trypodendron lineatum. Front Physiol 14:1155129. https://doi.org/10.3389/fphys.2023.1155129
Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712. https://doi.org/10.1016/j.ibmb.2010.07.013
Blomquist GJ, Tittiger C, Maclean M, Keeling CI (2021) Cytochromes P450: terpene detoxification and pheromone production in bark beetles. Curr Opin Insect Sci 43:97–102. https://doi.org/10.1016/j.cois.2020.11.010
Boone CK, Keefover- Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006. https://doi.org/10.1007/s10886-013-0313-0
Bykov R, Kerchev I, Demenkova M, Ryabinin A, Ilinsky Y (2020) Sex-specific Wolbachia infection patterns in populations of Polygraphus proximus Blandford (Coleoptera; Curculionidae: Scolytinae). InSects 11:547. https://doi.org/10.3390/insects11080547
Cachapa JC, Meyling NV, Burow M, Hauser TP (2021) Induction and priming of plant defense by root-associated insect-pathogenic fungi. J Chem Ecol 47:112–122. https://doi.org/10.1007/s10886-020-01234-x
Cale J, Collignon R, Klutsch J, Kanekar S, Hussain A, Erbilgin N (2016) Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS ONE 11:e0162197. https://doi.org/10.1371/journal.pone.0162197
Cale J, Ding R, Wang F, Rajabzadeh R, Erbilgin N (2019a) Ophiostomatoid fungi can emit the bark beetle pheromone verbenone and other semiochemicals in media amended with various pine chemicals and beetle-released compounds. Fungal Ecol 39:285–295. https://doi.org/10.1016/j.funeco.2019.01.003
Cale J, Klutsch J, Dykstra C, Peters B, Erbilgin N, Plomion C (2019b) Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species. Tree Physiol 39:1121–1135. https://doi.org/10.1093/treephys/tpz012
Cambronero-Heinrichs J, Battisti A, Biedermann P, Cavaletto G, Castro-Gutierrez V, Favaro L, Santoeimma G, Rassati D (2023) Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol Ecol 99:1–11. https://doi.org/10.1093/femsec/fiad144
Cao Q, Wickham JD, Chen L, Ahmad F, Lu M, Sun J (2018) Effect of oxygen on verbenone conversion from cis-verbenol by gut facultative anaerobes of Dendroctonus valens. Front Microbiol 9:464. https://doi.org/10.3389/fmicb.2018.00464
Cao Q, Koski T-M, Li H, Zhang C, Sun J (2022) The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. Insect Sci 30:459–472. https://doi.org/10.1111/1744-7917.13101
Cao Q, Zhao Y, Koski T-M, Li H, Sun J (2023) Effects of simulated gut pH environment on bacterial composition and pheromone production of Dendroctonus valens. Insect Sci. https://doi.org/10.1111/1744-7917.13210
Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645. https://doi.org/10.1111/j.1365-2311.2006.00829.x
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D (2023) The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1224096
Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2013) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62. https://doi.org/10.1111/ppa.12073
Ceja-Navarro J, Vega F, Karouz U, Hao Z, Jenkins S, Lim H, Kosina P, Infante F, Northen T, Brodie E (2016) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618. https://doi.org/10.1038/s41467-023-42217-2
Chakraborty A, Asharaf MZ, Modlinger R, Synek J, Schlyter F, Roy A (2020) Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci Rep 10:18572. https://doi.org/10.1038/s41598-020-75203-5
留言 (0)