Abraham J, Lin Y, RoyChowdhury A, Christodoulatos C, Conway M, Smolinski B, Braida W (2018) Algae toxicological assessment and valorization of energetic-laden wastewater streams using Scenedesmus obliquus. J Clean Prod 202:838–845
Amaral HI, Fernandes J, Berg M, Schwarzenbach RP, Kipfer R (2009) Assessing tnt and dnt groundwater contamination by compound-specific isotope analysis and 3h–3he groundwater dating: a case study in Portugal. Chemosphere 77:805–812
Ames BN, Kammen HO, Yamasaki E (1975) Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. Proc Natl Acad Sci 72:2423–2427
Arnett CM, Rodriguez G, Maloney SW (2009) Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2, 4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16s rrna gene clone libraries. Microbes Environ 24:72–75
Arthur JD, Mark NW, Taylor S, Šimůnek J, Brusseau ML, Dontsova KM (2018) Dissolution and transport of insensitive munitions formulationsIMX-101 and IMX-104 in saturated soil columns. Sci Total Environ 624:758–768
Aune T, Dybing E (1979) Mutagenic activation of 2, 4-diaminoanisole and 2-aminofluorene in vitro by liver and kidney fractions from aromatic hydrocarbon responsive and nonresponsive mice. Biochem Pharmacol 28:2791–2797
Barrows SE, Cramer CJ, Truhlar DG, Elovitz MS, Weber EJ (1996) Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environ Sci Technol 30:3028–3038
Becher JB, Beal SA, Taylor S, Dontsova K, Wilcox DE (2019) Photo-transformation of aqueous nitroguanidine and 3-nitro-1, 2, 4-triazol-5-one: emerging munitions compounds. Chemosphere 228:418–426
Behrend C, Heesche-Wagner K (1999) Formation of hydride-meisenheimer complexes of picric acid (2, 4, 6-trinitrophenol) and 2, 4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain cb 22–2. Appl Environ Microbiol 65:1372–1377
Bhatnagar N, Kamath G, Potoff JJ (2013) Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys Chem Chem Phys 15:6467–6474
Boddu VM, Abburi K, Maloney SW, Damavarapu R (2008) Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole. J Chem Eng Data 53:1120–1125
Boddu VM, Abburi K, Fredricksen AJ, Maloney SW, Damavarapu R (2009) Equilibrium and column adsorption studies of 2, 4-dinitroanisole (DNAN) on surface modified granular activated carbons. Environ Technol 30(2):173–181
Bosma TN, van der Meer JR, Schraa G, Tros ME, Zehnder AJ (1988) Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol Ecol 4:223–229
Cerniglia CE, Somerville CC (1995) Reductive metabolism of nitroaromatic and nitropolycyclic aromatic hydrocarbons. Biodegradation of nitroaromatic compounds. Springer, Berlin, pp 99–115
Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: camp edwards, massachusetts, USA. Environ Pollut 129:13–21
Darrach MR, Chutjian A, Plett GA (1998) Trace explosives signatures from world war ii unexploded undersea ordnance. Environ Sci Technol 32:1354–1358
Dodard SG, Sarrazin M, Hawari J, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2013) Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN). J Hazard Mater 262:143–150
Dolfing J, Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol Ecol 13:23–29
Ebert S, Fischer P, Knackmuss H-J (2001) Converging catabolism of 2, 4, 6-trinitrophenol (picric acid) and 2, 4-dinitrophenol by Nocardioides simplex fj2-1a. Biodegradation 12:367–376
Felt D, Johnson JL, Larson S, Hubbard B, Henry K, Nestler C, Ballard JH (2013). Evaluation of treatment technologies for wastewater from insensitive munitions production. Phase 1: Technology down-selection. Engineer Research And Development Center Vicksburg Ms Environmental Lab.
Fida TT, Palamuru S, Pandey G, Spain JC (2014) Aerobic biodegradation of 2, 4-dinitroanisole by Nocardioides sp. strain JS1661. Appl Environ Microbiol 80(24):7725–31
Field JA, Stams AJ, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 67:47–77
Fuller ME, Rezes RT, Hedman PC, Jones JC, Sturchio NC, Hatzinger PB (2021) Biotransformation of the insensitive munition constituents 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) by aerobic methane-oxidizing consortia and pure cultures. J Hazard Mater 407:124341
Gulkowska A, Sander M, Hollender J, Krauss M (2013) Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environ Sci Technol 47:6916–6924
Gulkowska A, Thalmann B, Hollender J, Krauss M (2014) Nonextractable residue formation of sulfonamide antimicrobials: new insights from soil incubation experiments. Chemosphere 107:366–372
Gust KA, Stanley JK, Wilbanks MS, Mayo ML, Chappell P, Jordan SM, Moores LC, Kennedy AJ, Barker ND, (2017) The increased toxicity of UVdegraded nitroguanidine and IMX-101 to zebrafish larvae: evidence implicating oxidative stress. Aquat Toxicol 190:228–245. https://doi.org/10.1016/j.aquatox.2017.07.004
Haag WR, Spanggord R, Mill T, Podoll RT, Chou TW, Tse DS, Harper JC (1990) Aquatic environmental fate of nitroguanidine. Environ Toxicol Chem 9:1359–1367
Hadnagy E, Mai A, Smolinski B, Braida W, Koutsospyros A (2018) Characterization of mg-based bimetal treatment of insensitive munition 2, 4-dinitroanisole. Environ Sci Pollut Res 25(24):24403–24416
Hang JD, Olivares C, Field JA, Sierra-Alvarez R (2013) Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater 262:281–287
Hawari J, Monteil-Rivera F, Perreault NN, Halasz A, Paquet L, Radovic-Hrapovic Z, Deschamps S, Thiboutot S, Ampleman G (2015) Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products. Chemosphere 119:16–23
Indest KJ, Hancock DE, Crocker FH, Eberly JO, Jung CM, Blakeney GA, Brame J, Chappell MA (2017) Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils. J Ind Microbiol Biotechnol 44:987–995
Jackovitz AM, Koistinen KA, Lent EM, Bannon DI, Quinn MJ, Johnson MS (2018) Neuromuscular anomalies following oral exposure to 3-nitro-1,2,4-triazol-5-one (NTO) in a one-generation study with japanese quail (Coturnix japonica). J Toxicol Environ Health Part a-Current Issues 81:718–733
Jog KV, Sierra-Alvarez R, Field JA (2020) Rapid biotransformation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one (NTO), by wastewater sludge. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-020-02843-0
Kadoya WM, Sierra-Alvarez R, Wong S, Abrell LM, Mash EA Jr, Field JA (2018) Evidence of anaerobic coupling reactions between reduced intermediates of 4-nitroanisole. Chemosphere 195:372–380
Kadoya WM, Sierra-Alvarez R, Jagadish B, Wong S, Abrell L, Mash EA, Field JA (2019) Coupling reactions between reduced intermediates of insensitive munitions compound analog 4-nitroanisole. Chemosphere 222:789–796
Kadoya WM, Sierra-Alvarez R, Jagadish B, Wong S, Abrell L, Mash EA, Field JA (2021) Covalent bonding of aromatic amine daughter products of 2, 4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition. Environ Pollut 268:115862
Kaplan DL, Cornell JH, Kaplan AM (1982) Decomposition of nitroguanidine. Environ Sci Technol 16:488–492
Karthikeyan S, Spain JC (2016) Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp js1661 in water, soil and bioreactors. J Hazard Mater 312:37–44
Karthikeyan S, Kurt Z, Pandey G, Spain JC (2016) Immobilized biocatalyst for detection and destruction of the insensitive explosive, 2,4-dinitroanisole (DNAN). Environ Sci Technol 50:11193–11199
留言 (0)