Microbial remediation of insensitive munitions compounds and their transformation products: from biodegradation mechanisms to engineered strategies

Abraham J, Lin Y, RoyChowdhury A, Christodoulatos C, Conway M, Smolinski B, Braida W (2018) Algae toxicological assessment and valorization of energetic-laden wastewater streams using Scenedesmus obliquus. J Clean Prod 202:838–845

Article  CAS  Google Scholar 

Amaral HI, Fernandes J, Berg M, Schwarzenbach RP, Kipfer R (2009) Assessing tnt and dnt groundwater contamination by compound-specific isotope analysis and 3h–3he groundwater dating: a case study in Portugal. Chemosphere 77:805–812

Article  CAS  Google Scholar 

Ames BN, Kammen HO, Yamasaki E (1975) Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. Proc Natl Acad Sci 72:2423–2427

Article  CAS  Google Scholar 

Arnett CM, Rodriguez G, Maloney SW (2009) Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2, 4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16s rrna gene clone libraries. Microbes Environ 24:72–75

Article  Google Scholar 

Arthur JD, Mark NW, Taylor S, Šimůnek J, Brusseau ML, Dontsova KM (2018) Dissolution and transport of insensitive munitions formulationsIMX-101 and IMX-104 in saturated soil columns. Sci Total Environ 624:758–768

Article  CAS  Google Scholar 

Aune T, Dybing E (1979) Mutagenic activation of 2, 4-diaminoanisole and 2-aminofluorene in vitro by liver and kidney fractions from aromatic hydrocarbon responsive and nonresponsive mice. Biochem Pharmacol 28:2791–2797

Article  CAS  Google Scholar 

Barrows SE, Cramer CJ, Truhlar DG, Elovitz MS, Weber EJ (1996) Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environ Sci Technol 30:3028–3038

Article  CAS  Google Scholar 

Becher JB, Beal SA, Taylor S, Dontsova K, Wilcox DE (2019) Photo-transformation of aqueous nitroguanidine and 3-nitro-1, 2, 4-triazol-5-one: emerging munitions compounds. Chemosphere 228:418–426

Article  CAS  Google Scholar 

Behrend C, Heesche-Wagner K (1999) Formation of hydride-meisenheimer complexes of picric acid (2, 4, 6-trinitrophenol) and 2, 4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain cb 22–2. Appl Environ Microbiol 65:1372–1377

Article  CAS  Google Scholar 

Bhatnagar N, Kamath G, Potoff JJ (2013) Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys Chem Chem Phys 15:6467–6474

Article  CAS  Google Scholar 

Boddu VM, Abburi K, Maloney SW, Damavarapu R (2008) Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole. J Chem Eng Data 53:1120–1125

Article  CAS  Google Scholar 

Boddu VM, Abburi K, Fredricksen AJ, Maloney SW, Damavarapu R (2009) Equilibrium and column adsorption studies of 2, 4-dinitroanisole (DNAN) on surface modified granular activated carbons. Environ Technol 30(2):173–181

Article  CAS  Google Scholar 

Bosma TN, van der Meer JR, Schraa G, Tros ME, Zehnder AJ (1988) Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol Ecol 4:223–229

Article  Google Scholar 

Cerniglia CE, Somerville CC (1995) Reductive metabolism of nitroaromatic and nitropolycyclic aromatic hydrocarbons. Biodegradation of nitroaromatic compounds. Springer, Berlin, pp 99–115

Google Scholar 

Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: camp edwards, massachusetts, USA. Environ Pollut 129:13–21

Article  CAS  Google Scholar 

Darrach MR, Chutjian A, Plett GA (1998) Trace explosives signatures from world war ii unexploded undersea ordnance. Environ Sci Technol 32:1354–1358

Article  CAS  Google Scholar 

Dodard SG, Sarrazin M, Hawari J, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2013) Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN). J Hazard Mater 262:143–150

Article  CAS  Google Scholar 

Dolfing J, Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol Ecol 13:23–29

Article  CAS  Google Scholar 

Ebert S, Fischer P, Knackmuss H-J (2001) Converging catabolism of 2, 4, 6-trinitrophenol (picric acid) and 2, 4-dinitrophenol by Nocardioides simplex fj2-1a. Biodegradation 12:367–376

Article  CAS  Google Scholar 

Felt D, Johnson JL, Larson S, Hubbard B, Henry K, Nestler C, Ballard JH (2013). Evaluation of treatment technologies for wastewater from insensitive munitions production. Phase 1: Technology down-selection. Engineer Research And Development Center Vicksburg Ms Environmental Lab.

Fida TT, Palamuru S, Pandey G, Spain JC (2014) Aerobic biodegradation of 2, 4-dinitroanisole by Nocardioides sp. strain JS1661. Appl Environ Microbiol 80(24):7725–31

Article  Google Scholar 

Field JA, Stams AJ, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 67:47–77

Article  CAS  Google Scholar 

Fuller ME, Rezes RT, Hedman PC, Jones JC, Sturchio NC, Hatzinger PB (2021) Biotransformation of the insensitive munition constituents 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) by aerobic methane-oxidizing consortia and pure cultures. J Hazard Mater 407:124341

Article  CAS  Google Scholar 

Gulkowska A, Sander M, Hollender J, Krauss M (2013) Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environ Sci Technol 47:6916–6924

Article  CAS  Google Scholar 

Gulkowska A, Thalmann B, Hollender J, Krauss M (2014) Nonextractable residue formation of sulfonamide antimicrobials: new insights from soil incubation experiments. Chemosphere 107:366–372

Article  CAS  Google Scholar 

Gust KA, Stanley JK, Wilbanks MS, Mayo ML, Chappell P, Jordan SM, Moores LC, Kennedy AJ, Barker ND, (2017) The increased toxicity of UVdegraded nitroguanidine and IMX-101 to zebrafish larvae: evidence implicating oxidative stress. Aquat Toxicol 190:228–245. https://doi.org/10.1016/j.aquatox.2017.07.004

Haag WR, Spanggord R, Mill T, Podoll RT, Chou TW, Tse DS, Harper JC (1990) Aquatic environmental fate of nitroguanidine. Environ Toxicol Chem 9:1359–1367

Article  CAS  Google Scholar 

Hadnagy E, Mai A, Smolinski B, Braida W, Koutsospyros A (2018) Characterization of mg-based bimetal treatment of insensitive munition 2, 4-dinitroanisole. Environ Sci Pollut Res 25(24):24403–24416

Article  CAS  Google Scholar 

Hang JD, Olivares C, Field JA, Sierra-Alvarez R (2013) Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater 262:281–287

Article  Google Scholar 

Hawari J, Monteil-Rivera F, Perreault NN, Halasz A, Paquet L, Radovic-Hrapovic Z, Deschamps S, Thiboutot S, Ampleman G (2015) Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products. Chemosphere 119:16–23

Article  CAS  Google Scholar 

Indest KJ, Hancock DE, Crocker FH, Eberly JO, Jung CM, Blakeney GA, Brame J, Chappell MA (2017) Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils. J Ind Microbiol Biotechnol 44:987–995

Article  CAS  Google Scholar 

Jackovitz AM, Koistinen KA, Lent EM, Bannon DI, Quinn MJ, Johnson MS (2018) Neuromuscular anomalies following oral exposure to 3-nitro-1,2,4-triazol-5-one (NTO) in a one-generation study with japanese quail (Coturnix japonica). J Toxicol Environ Health Part a-Current Issues 81:718–733

Article  CAS  Google Scholar 

Jog KV, Sierra-Alvarez R, Field JA (2020) Rapid biotransformation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one (NTO), by wastewater sludge. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-020-02843-0

Article  Google Scholar 

Kadoya WM, Sierra-Alvarez R, Wong S, Abrell LM, Mash EA Jr, Field JA (2018) Evidence of anaerobic coupling reactions between reduced intermediates of 4-nitroanisole. Chemosphere 195:372–380

Article  CAS  Google Scholar 

Kadoya WM, Sierra-Alvarez R, Jagadish B, Wong S, Abrell L, Mash EA, Field JA (2019) Coupling reactions between reduced intermediates of insensitive munitions compound analog 4-nitroanisole. Chemosphere 222:789–796

Article  CAS  Google Scholar 

Kadoya WM, Sierra-Alvarez R, Jagadish B, Wong S, Abrell L, Mash EA, Field JA (2021) Covalent bonding of aromatic amine daughter products of 2, 4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition. Environ Pollut 268:115862

Article  CAS  Google Scholar 

Kaplan DL, Cornell JH, Kaplan AM (1982) Decomposition of nitroguanidine. Environ Sci Technol 16:488–492

Article  CAS  Google Scholar 

Karthikeyan S, Spain JC (2016) Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp js1661 in water, soil and bioreactors. J Hazard Mater 312:37–44

Article  CAS  Google Scholar 

Karthikeyan S, Kurt Z, Pandey G, Spain JC (2016) Immobilized biocatalyst for detection and destruction of the insensitive explosive, 2,4-dinitroanisole (DNAN). Environ Sci Technol 50:11193–11199

留言 (0)

沒有登入
gif