Natural compounds as modulators of miRNAs: a new frontier in bladder cancer treatment

Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ. A review of the etiology and epidemiology of bladder cancer: all you need to know. Cureus. 2022;14(7):e27330.

PubMed  PubMed Central  Google Scholar 

Thompson D, Lawrentschuk N, Bolton D. New approaches to targeting epigenetic regulation in bladder cancer. Cancers. 2023;15(6):1856.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diener C, Keller A, Meese E. The miRNA–target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57.

Article  CAS  PubMed  Google Scholar 

Zhang B, Tian L, Xie J, Chen G, Wang F. Targeting miRNAs by natural products: a new way for cancer therapy. Biomed Pharmacother. 2020;130:110546.

Article  CAS  PubMed  Google Scholar 

Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human MicroRNA modulation. Molecules. 2020;25:63.

Article  CAS  Google Scholar 

Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SCB, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): a potential source and novel strategy targeting gene and cancer therapeutics. Non-coding RNA Res. 2024;9(4):1140–58.

Article  CAS  Google Scholar 

Huang L, Huang X-H, Yang X, Hu J-Q, Zhu Y-Z, Yan P-Y, Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol Res. 2024;201:107100.

Article  CAS  PubMed  Google Scholar 

Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res. 2024;14(10):2845–916.

Article  PubMed  PubMed Central  Google Scholar 

Leitão AL, Enguita FJ. A structural view of miRNA biogenesis and function. Non-Coding RNA. 2022;8(1):10.

Article  PubMed  PubMed Central  Google Scholar 

Vishnoi A, Rani S. miRNA biogenesis and regulation of diseases: an updated overview. In: Rani S, editor. MicroRNA profiling: methods and protocols. New York: Springer; 2023. p. 1–12.

Google Scholar 

Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 2022;38(4):379–94.

Article  CAS  PubMed  Google Scholar 

Zaporozhchenko IA, Rykova EY, Laktionov PP. The fundamentals of miRNA biology: structure, biogenesis, and regulatory functions. Russ J Bioorg Chem. 2020;46(1):1–13.

Article  CAS  Google Scholar 

Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41.

Article  CAS  PubMed  Google Scholar 

McConkey DJ, Lee S, Choi W, Tran M, Majewski T, Lee S, Siefker-Radtke A, Dinney C, Czerniak B. Molecular genetics of bladder cancer: emerging mechanisms of tumor initiation and progression. Urol Oncol: Semin Orig Investig. 2010;28(4):429–40.

Article  CAS  Google Scholar 

Sathe A, Nawroth R. Targeting the PI3K/AKT/mTOR pathway in bladder cancer. In: Schulz WA, Hoffmann MJ, Niegisch G, editors. Urothelial carcinoma: methods and protocols. New York: Springer; 2018. p. 335–50.

Chapter  Google Scholar 

Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? Front Oncol. 2022;12:819128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bockorny B, Rusan M, Chen W, Liao RG, Li Y, Piccioni F, Wang J, Tan L, Thorner AR, Li T, Zhang Y, Miao C, Ovesen T, Shapiro GI, Kwiatkowski DJ, Gray NS, Meyerson M, Hammerman PS, Bass AJ. RAS–MAPK reactivation facilitates acquired resistance in FGFR1-amplified lung cancer and underlies a rationale for upfront FGFR–MEK blockade. Mol Cancer Ther. 2018;17(7):1526–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouerhani S, Elgaaied ABA. The mutational spectrum of HRAS, KRAS, NRAS and FGFR3 genes in bladder cancer. Cancer Biomark. 2012;10:259–66.

Article  Google Scholar 

Dangle PP, Zaharieva B, Jia H, Pohar KS. Ras-MAPK pathway as a therapeutic target in cancer—emphasis on bladder cancer. Recent Pat Anti-Cancer Drug Discov. 2009;4(2):125–36.

Article  CAS  Google Scholar 

Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023;8(1):455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ascione CM, Napolitano F, Esposito D, Servetto A, Belli S, Santaniello A, Scagliarini S, Crocetto F, Bianco R, Formisano L. Role of FGFR3 in bladder cancer: treatment landscape and future challenges. Cancer Treat Rev. 2023;115:102530.

Article  CAS  PubMed  Google Scholar 

Choi G-S, Shin YS, Kim J-H, Choi SY, Lee S-K, Nam Y-H, Lee Y-M, Park H-S. Prevalence and risk factors for depression in Korean adult patients with asthma: is there a difference between elderly and non-elderly patients? jkms. 2014;29(12):1626–31.

PubMed  PubMed Central  Google Scholar 

Sathe A, Koshy N, Schmid SC, Thalgott M, Schwarzenböck SM, Krause BJ, Holm PS, Gschwend JE, Retz M, Nawroth R. CDK4/6 inhibition controls proliferation of bladder cancer and transcription of RB1. J Urol. 2016;195(3):771–9.

Article  CAS  PubMed  Google Scholar 

Desai NB, Scott SN, Zabor EC, Cha EK, Hreiki J, Sfakianos JP, Ramirez R, Bagrodia A, Rosenberg JE, Bajorin DF, Berger MF, Bochner BH, Zelefsky MJ, Kollmeier MA, Ostrovnaya I, Al-Ahmadie HA, Solit DB, Iyer G. Genomic characterization of response to chemoradiation in urothelial bladder cancer. Cancer. 2016;122(23):3715–23.

Article  CAS  PubMed  Google Scholar 

Mossanen M, Carvalho FLF, Muralidhar V, Preston MA, Reardon B, Conway JR, Curran C, Freeman D, Sha S, Sonpavde G, Hirsch M, Kibel AS, Van Allen EM, Mouw KW. Genomic features of muscle-invasive bladder cancer arising after prostate radiotherapy. Eur Urol. 2022;81(5):466–73.

Article  CAS  PubMed  Google Scholar 

Genta S, Martorana F, Stathis A, Colombo I. Targeting the DNA damage response: PARP inhibitors and new perspectives in the landscape of cancer treatment. Crit Rev Oncol Hematol. 2021;168:103539.

Article  PubMed  Google Scholar 

Marechal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5(9):a012716.

Article  PubMed  PubMed Central  Google Scholar 

Ilieva MS. Non-coding RNAs in neurological and neuropsychiatric disorders: unraveling the hidden players in disease pathogenesis. Cells. 2024;13(12):1063.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int. 2023;23:284.

Article  PubMed  PubMed Central  Google Scholar 

Wu G, Weng W, Xia P, Yan S, Zhong C, Xie L, Xie Y, Fan G. Wnt signalling pathway in bladder cancer. Cell Signal. 2021;79:109886.

Article  CAS  PubMed  Google Scholar 

Uzuner E, Ulu GT, Gürler SB, Baran Y. The role of MiRNA in cancer: pathogenesis, diagnosis, and treatment, miRNomics: MicroRNA Biol Comput Anal. 2022;375–422.

Ding Z-S, He Y-H, Deng Y-S, Peng P-X, Wang J-F, Chen X, Zhao P-Y, Zhou X-F. MicroRNA-34a inhibits bladder cancer cell migration and invasion, and upregulates PTEN expression. Oncol Lett. 2019;18(5):5549–54.

CAS  PubMed  PubMed Central  Google Scholar 

Chou KY, Chang AC, Tsai TF, Lin YC, Chen HE, Ho CY, Chen PC, Hwang TIS. MicroRNA-34a-5p serves as a tumor suppressor by regulating the cell motility of bladder cancer cells through matrix metalloproteinase-2 silencing. Oncol Rep. 2021;45(3):911–20.

Article  CAS 

留言 (0)

沒有登入
gif