Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers

M. H. Lee, Y. H. Chin, C.H. Ng, K.R.Y. Nistala, Z.G.W. Ow, G. Sundar, ... & C.M. Khoo, Risk factors of thyroid eye disease. Endocrine Practice, 27(3), (2021), 245–253.

R. Puneet Kumar, M. Gupta, Optical coherence tomography image-based eye disease detection using deep convolutional neural network. Health Information Science and Systems, 10(1), (2022), 13.

G. Arslan, Ç.B. Erdaş, Detection of Cataract, Diabetic Retinopathy and Glaucoma Eye Diseases with Deep Learning Approach. Intelligent Methods in Engineering Sciences, 2(2), (2023), 42-47.

Google Scholar 

National Eye Institute [online]. Available: https://www.nei.nih.gov/ (Accessed 21 November 2023)

E. Korot, M.B. Gonçalves, J. Huemer, S. Beqiri, H. Khalid, M. Kelly, M., ... & P.A. Keane, Clinician-Driven AI: Code-Free Self-Training on Public Data for Diabetic Retinopathy Referral. JAMA ophthalmology, 141(11), (2023), 1029–1036.

X. Zeng, H. Chen, Y. Luo, W. Ye, Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access 7, (2019), 30744–30753.

Article  Google Scholar 

X. Pan, K. Jin, J. Cao, Z. Liu, J. Wu, K. You, ... & J. Ye, Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, (2020), 779–785.

N. Gour, P. Khanna, Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomedical signal processing and control, 66, (2021), 102329.

Article  Google Scholar 

N. Badah, A. Algefes, A. AlArjani, & R. Mokni, Automatic eye disease detection using machine learning and deep learning models. In Pervasive Computing and Social Networking: Proceedings of ICPCSN 2022 (pp. 773–787). Singapore: Springer Nature Singapore.

K. Karthik, M. Mahadevappa, Convolution neural networks for optical coherence tomography (OCT) image classification. Biomedical Signal Processing and Control, 79, (2023), 104176.

Article  Google Scholar 

P. Dutta, K.A.Sathi, M.A. Hossain, M.A.A. Dewan, Conv-ViT: a convolution and vision transformer-based hybrid feature extraction method for retinal disease detection. Journal of Imaging, 9(7), (2023), 140.

Article  PubMed  PubMed Central  Google Scholar 

T.D. Nguyen, D.T. Le, J. Bum, S. Kim, S. J. Song, H. Choo, Self-FI: Self-Supervised Learning for Disease Diagnosis in Fundus Images. Bioengineering, 10(9), (2023), 1089.

Article  PubMed  PubMed Central  Google Scholar 

S. Benbakreti, U. Ozkaya,The classification of eye diseases from fundus images based on CNN and pretrained models, (2024).

Kaggle eye diseases dataset [online]. Available: https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification/data (Accessed: 12 August 2023).

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), 770–778.

G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, (2017), 4700–4708.

C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence, 31 (1), (2017).

Y. Bhatia, A. Bajpayee, D. Raghuvanshi, H. Mittal, Image captioning using Google’s inception-resnet-v2 and recurrent neural network. In 2019 Twelfth International Conference on Contemporary Computing (IC3), 1–6, IEEE, (2019, August).

Göçeri, E. A Comparative Evaluation for Liver Segmentation from SPIR Images and a Novel Level Set Method Using Signed Pressure Force Function, PhD Thesis, İzmir Institute of Technology, 2013.

A. Dosovitskiy, L. Beyer, A: Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,, ... & N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010, (2020), 11929.

Göçeri, E. Polyp Segmentation Using a Hybrid Vision Transformer and a Hybrid Loss Function, Journal of Imaging Informatics in Medicine, 2024. https://doi.org/10.1007/s10278-023-00954-2.

Article  PubMed  PubMed Central  Google Scholar 

Göçeri, E. Nuclei Segmentation Using Attention Aware and Adversarial Networks, Neurocomputing, 2024. https://doi.org/10.1016/j.neucom.2024.127445.

Article  Google Scholar 

Göçeri, E. An Application for Automated Diagnosis of Facial Dermatological Diseases, İzmir Kâtip Çelebi University Health Sciences Journal, 2021.

Göçeri, E. Vision Transformer-Based Classification of Gliomas from Histopathological Images, Expert Systems with Applications, 2024. https://doi.org/10.1016/j.eswa.2023.122672.

Article  Google Scholar 

N.G. Inan, O. Kocadağlı, D. Yıldırım, I. Meşe, O. Kovan, Multi-class classification of thyroid nodules from automatic segmented ultrasound images: Hybrid ResNet based UNet convolutional neural network approach. Computer Methods and Programs in Biomedicine, 243, (2024), 107921.

Article  Google Scholar 

I. Mese, N.G. Inan, O. Kocadagli, A. Salmaslioglu, D.Yildirim, ChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artifical intelligence. Medical Ultrasonography, 25(4), (2023), 375-383.

Article  PubMed  Google Scholar 

T. Fawcett, An introduction to ROC analysis. Pattern recognition letters, 27(8), (2006), 861-874.

Article  Google Scholar 

M. Sokolova, G. Lapalme, A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), (2009), 427-437.

Article  Google Scholar 

R. Sarki, K. Ahmed, H. Wang, Y. Zhang, K. Wang, Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Transactions on Scalable Information Systems, 9(4), (2021).

N. Sengar, R.C. Joshi, M.K. Dutta, R. Burget, EyeDeep-Net: A multi-class diagnosis of retinal diseases using deep neural network. Neural Computing and Applications, 35(14), (2023), 10551-10571.

Article  Google Scholar 

Liu, S., Wang, W., Deng, L., & Xu, H. (2024). Cnn-trans model: A parallel dual-branch network for fundus image classification. Biomedical Signal Processing and Control, 96, 106621.

Article  Google Scholar 

Mannanuddin, K., Vimal, V. R., Srinivas, A., Uma Mageswari, S. D., Mahendran, G., Ramya, J., ... & Vidhya, R. G. (2023). Enhancing medical image analysis: A fusion of fully connected neural network classifier with CNN-VIT for improved retinal disease detection. Journal of Intelligent & Fuzzy Systems, (Preprint), 1–16.

Shen, Y., Shao, X., Inigo Romillo, B., Dreizin, D., Unberath, M. FastSAM-3DSlicer: A 3D-Slicer Extension for 3D Volumetric Segment Anything Model with Uncertainty Quantification, arXiv preprint arXiv:2407.12658, 2024. https://arxiv.org/abs/2407.12658.

Göçeri, E. GAN-Based Augmentation Using a Hybrid Loss Function for Dermoscopy Images, Artificial Intelligence Review, 2024. https://doi.org/10.1007/s10462-024-10897-x.

Article  Google Scholar 

Zhang, H., Li, F., Xu, H., Huang, S., Liu, S., Ni, L. M., & Zhang, L. (2023). Mp-former: Mask-piloted transformer for image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18074–18083).

Göçeri, E., Ünlü, M.Z., Dicle, O. A Comparative Performance Evaluation of Various Approaches for Liver Segmentation from SPIR Images, Turkish Journal of Electrical Engineering and Computer Sciences, 2015. https://doi.org/10.3906/elk-1304-36.

Article  Google Scholar 

Göçeri, E., Ünlü, M.Z., Güzelis, C., Dicle, O. An Automatic Level Set Based Liver Segmentation from MRI Data Sets, in 2012 IEEE International Conference on Image Processing Theory, Tools and Applications, 2012. https://doi.org/10.1109/IPTA.2012.6469551.

Göçeri, E. Automatic Kidney Segmentation Using Gaussian Mixture Model on MRI Sequences, in Lecture Notes in Electrical Engineering, 2011. https://doi.org/10.1007/978-3-642-21747-0_4.

Article  Google Scholar 

Göçeri, N., Göçeri, E. A Neural Network Based Kidney Segmentation from MR Images, in 2015 IEEE International Conference on Machine Learning and Applications, 2015. https://doi.org/10.1109/ICMLA.2015.229.

Dura, E., Domingo, J., Göçeri, E., Martí-Bonmatí, L. A Method for Liver Segmentation in Perfusion MR Images Using Probabilistic Atlases and Viscous Reconstruction, Pattern Analysis and Applications, 2018. https://doi.org/10.1007/s10044-017-0666-z.

Article  Google Scholar 

Domingo, J., Dura, E., Göçeri, E. Iteratively Learning a Liver Segmentation Using Probabilistic Atlases: Preliminary Results, in 2016 IEEE International Conference on Machine Learning and Applications, 2016. https://doi.org/10.1109/ICMLA.2016.0104.

留言 (0)

沒有登入
gif