Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies

Hanekamp D, Cloos J, Schuurhuis GJ. Leukemic stem cells: identification and clinical application. Int J Hematol. 2017;105(5):549–57. https://doi.org/10.1007/S12185-017-2221-5/TABLES/2.

Article  CAS  PubMed  Google Scholar 

Shallis RM, Weiss JJ, Deziel NC, Gore SD. Challenging the concept of de novo acute myeloid leukemia: environmental and occupational leukemogens hiding in our midst. Blood Rev. 2021. https://doi.org/10.1016/J.BLRE.2020.100760.

Article  PubMed  Google Scholar 

Pollyea DA, Jordan CT. Therapeutic targeting of acute myeloid leukemia stem cells. Blood. 2017;129(12):1627–35. https://doi.org/10.1182/BLOOD-2016-10-696039.

Article  CAS  PubMed  Google Scholar 

Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Clinical medicine antibody therapies for acute myeloid leukemia: unconjugated, toxin-conjugated, radio-conjugated and multivalent formats. J Clin Med. 2019. https://doi.org/10.3390/jcm8081261.

Article  PubMed  PubMed Central  Google Scholar 

Kantarjian HM, Kadia TM, DiNardo CD, Welch MA, Ravandi F. Acute myeloid leukemia: Treatment and research outlook for 2021 and the MD Anderson approach. Cancer. 2021;127(8):1186–207. https://doi.org/10.1002/CNCR.33477.

Article  PubMed  Google Scholar 

Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science (1979). 2013;342(6165):1432–3. https://doi.org/10.1126/science.342.6165.1432.

Article  CAS  Google Scholar 

Bachireddy P, Burkhardt UE, Rajasagi M, Wu CJ. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer. 2015;15(4):201–15. https://doi.org/10.1038/nrc3907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28(23):3730–8. https://doi.org/10.1200/jco.2010.28.8852.

Article  PubMed  PubMed Central  Google Scholar 

Herv H, Dombret H, Gardin C. Review series advances in acute myeloid leukemia an update of current treatments for adult acute myeloid leukemia. Blood J Am Soc Hematol. 2016. https://doi.org/10.1182/blood-2015-08.

Article  Google Scholar 

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/J.IMMUNI.2013.07.012.

Article  PubMed  Google Scholar 

Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer. 2019;58(12):850–8. https://doi.org/10.1002/gcc.22805.

Article  CAS  PubMed  Google Scholar 

Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer. 2017. https://doi.org/10.1186/s12943-016-0574-7.

Article  PubMed  PubMed Central  Google Scholar 

Abutalib S, Tallman M. Monoclonal antibodies for the treatment of acute myeloid leukemia. Curr Pharm Biotechnol. 2006;7(5):343–69. https://doi.org/10.2174/138920106778521578.

Article  CAS  PubMed  Google Scholar 

Senyukov V, Kelton W, Mehta N, Georgiou G, Lee D. Engineering anti-AML antibodies for improved NK cell ADCC. Blood. 2012;120(21):3629–3629. https://doi.org/10.1182/BLOOD.V120.21.3629.3629.

Article  Google Scholar 

Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol. 2020;13(1):1–20. https://doi.org/10.1186/S13045-020-00996-X.

Article  Google Scholar 

Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19. https://doi.org/10.1158/1541-7786.MCR-19-0582/82267/AM/ANTIBODY-DRUG-CONJUGATES-A-COMPREHENSIVE.

Article  CAS  PubMed  Google Scholar 

Stokke JL, Bhojwani D. Antibody-drug conjugates for the treatment of acute pediatric leukemia. J Clin Med. 2021;10(16):3556. https://doi.org/10.3390/JCM10163556.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abaza Y, Fathi AT. Monoclonal antibodies in acute myeloid leukemia-are we there yet? Cancer J. 2022;28(1):37–42. https://doi.org/10.1097/PPO.0000000000000577.

Article  CAS  PubMed  Google Scholar 

Brierley CK, Staves J, Roberts C, et al. The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia. Transfusion (Paris). 2019;59(7):2248–54. https://doi.org/10.1111/TRF.15397.

Article  CAS  Google Scholar 

Garcia-Manero G, Przespolewski A, Abaza Y, Byrne M, Fong AP, Jin F, Forgie AJ, Tsiatis AC, Guan S, Erba HP. Evorpacept (ALX148), a CD47-blocking myeloid checkpoint inhibitor, in combination with azacitidine and venetoclax in patients with acute myeloid leukemia (ASPEN-05): results from phase 1a dose escalation part. Blood. 2022;140(Supplement 1):9046–7. https://doi.org/10.1182/BLOOD-2022-157606.

Article  Google Scholar 

Riether C, Pabst T, Höpner S, et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med. 2020;26(9):1459–67. https://doi.org/10.1038/s41591-020-0910-8.

Article  CAS  PubMed  Google Scholar 

Vasu S, He S, Cheney C, et al. Decitabine enhances anti-CD33 monoclonal antibody BI 836858–mediated natural killer ADCC against AML blasts. Blood. 2016;127(23):2879–89. https://doi.org/10.1182/BLOOD-2015-11-680546.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FT538 in combination with daratumumab in AML acute myeloid leukemia—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04714372. Accessed 26 Nov 2022

Daratumumab in treating patients with relapsed or refractory acute myeloid leukemia or high-risk myelodysplastic syndrome—no study results posted—ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/results/NCT03067571?term=NCT03067571&draw=2&rank=1. Accessed 26 Nov 2022.

Study of IMC-EB10 in participant with leukemia—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00887926. Accessed 27 Nov 2022

Phase III trials of vadastuximab talirine discontinued amid safety concerns | ASH Clinical News | American Society of Hematology. https://ashpublications.org/ashclinicalnews/news/3240/Phase-III-Trials-of-Vadastuximab-Talirine. Accessed 27 Nov 2022.

Daver N, Salhotra A, Brandwein JM, et al. A phase I dose-escalation study of DCLL9718S, an antibody-drug conjugate targeting C-type lectin-like molecule-1 (CLL-1) in patients with acute myeloid leukemia. Am J Hematol. 2021;96(5):E175–9. https://doi.org/10.1002/AJH.26136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gemtuzumab ozogamicin with G-CSF, cladribine, cytarabine & mitoxantrone for untreated AML & high-grade myeloid neoplasm—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT03531918?term=NCT03531918&draw=2&rank=1. Accessed 12 Dec 2022.

Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96. https://doi.org/10.1016/s1470-2045(14)70281-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kauder SE, Kuo TC, Harrabi O, et al. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS ONE. 2018. https://doi.org/10.1371/JOURNAL.PONE.0201832.

Article  PubMed  PubMed Central  Google Scholar 

Riether C, Schürch CM, Bührer ED, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017;214(2):359–80. https://doi.org/10.1084/JEM.20152008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glouchkova L, Ackermann B, Zibert A, et al. The CD70/CD27 pathway is critical for stimulation of an effective cytotoxic T cell response against b cell precursor acute lymphoblastic leukemia. J Immunol. 2009;182(1):718–25. https://doi.org/10.4049/jimmunol.182.1.718.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif