Synthesis and Neurobehavioral Evaluation of a Potent Multitargeted Inhibitor for the Treatment of Alzheimer’s Disease

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P et al (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement 19(2):658–670. https://doi.org/10.1002/alz.12694

Li X, Feng X, Sun X, Hou N, Han F, Liu Y (2022) Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2019. Front Aging Neurosci 14. https://doi.org/10.3389/fnagi.2022.937486

Jabir NR, Khan FR, Tabrez S (2018) Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther 24(9):753–762. https://doi.org/10.1111/cns.12971

Article  CAS  PubMed Central  PubMed  Google Scholar 

Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S (2023) Nanomedicine-based immunotherapy for Alzheimer’s disease. Neurosci Biobehav Rev 144:104973. https://doi.org/10.1016/j.neubiorev.2022.104973

Article  CAS  PubMed  Google Scholar 

Makhaeva GF, Lushchekina SV, Kovaleva NV, Yu Astakhova T, Boltneva NP, Rudakova EV, Serebryakova OG, Proshin AN et al (2021) Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer’s disease treatment. Bioorg Chem 112:104974. https://doi.org/10.1016/j.bioorg.2021.104974

Article  CAS  PubMed  Google Scholar 

Islam BU, Jabir NR, Tabrez S (2019) The role of mitochondrial defects and oxidative stress in Alzheimer’s disease. J Drug Target 27(9):932–942. https://doi.org/10.1080/1061186X.2019.1584808

Article  CAS  PubMed  Google Scholar 

Rai SN, Singh C, Singh A, Singh MP, Singh BK (2020) Mitochondrial dysfunction: a potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol 57(7):3075–3088. https://doi.org/10.1007/s12035-020-01945-y

Article  CAS  PubMed  Google Scholar 

Rai SN, Zahra W, Birla H, Singh SS, Singh SP (2018) Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 10:192. https://doi.org/10.3389/fnagi.2018.00192

Article  CAS  PubMed Central  PubMed  Google Scholar 

Tripathi PN, Srivastava P, Sharma P, Tripathi MK, Seth A, Tripathi A, Rai SN, Singh SP et al (2019) Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 85:82–96. https://doi.org/10.1016/j.bioorg.2018.12.017

Singh M, Kaur M, Vyas B, Silakari O (2018) Design, synthesis and biological evaluation of 2-Phenyl-4H-chromen-4-one derivatives as polyfunctional compounds against Alzheimer’s disease. Med Chem Res 27(2):520–530. https://doi.org/10.1007/s00044-017-2078-4

Article  CAS  Google Scholar 

Srivastava P, Tripathi PN, Sharma P, Rai SN, Singh SP, Srivastava RK, Shankar S, Shrivastava SK (2019) Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 163:116–135. https://doi.org/10.1016/j.ejmech.2018.11.049

Article  CAS  PubMed  Google Scholar 

Zhang N, Gan L, Xiang G, Xu J, Jiang T, Li Y, Wu Y, Ni R et al (2024) Cholinesterase inhibitors-associated torsade de pointes/QT prolongation: a real-world pharmacovigilance study. Front Pharmacol 14. https://doi.org/10.3389/fphar.2023.1343650

Obrenovich M, Tabrez S, Siddiqui B, McCloskey B, Perry G (2020) The microbiota-gut-brain axis-heart shunt part II: prosaic foods and the brain-heart connection in Alzheimer disease. Microorganisms 8(4):493. https://doi.org/10.3390/microorganisms8040493

Article  CAS  PubMed Central  PubMed  Google Scholar 

Long J, Qin F, Luo J, Zhong G, Huang S, Jing L, Yi T, Liu J et al (2024) Design, synthesis, and biological evaluation of novel capsaicin-tacrine hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg Chem 143:107026. https://doi.org/10.1016/j.bioorg.2023.107026

Drakontaeidi A, Pontiki E (2024) Multi-target-directed cinnamic acid hybrids targeting Alzheimer’s disease. Int J Mol Sci 25(1):582. https://doi.org/10.3390/ijms25010582

Article  CAS  PubMed Central  PubMed  Google Scholar 

Hafez DE, Dubiel M, La Spada G, Catto M, Reiner-Link D, Syu Y-T, Abdel-Halim M, Hwang T-L et al (2023) Novel benzothiazole derivatives as multitargeted-directed ligands for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 38(1):2175821. https://doi.org/10.1080/14756366.2023.2175821

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jabir NR, Rehman MT, AlAjmi MF, Ahmed BA, Tabrez S (2023) Prioritization of bioactive compounds envisaging yohimbine as a multi targeted anticancer agent: insight from molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 41(20):10463–10477. https://doi.org/10.1080/07391102.2022.2158137

Article  CAS  PubMed  Google Scholar 

Jabir NR, Rehman MT, Alsolami K, Shakil S, Zughaibi TA, Alserihi RF, Khan MS, AlAjmi MF et al (2021) Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer’s treatment. Ann Med 53(1):2332–2344. https://doi.org/10.1080/07853890.2021.2009124

Article  CAS  PubMed Central  PubMed  Google Scholar 

Jabir NR, Rehman MT, Tabrez S, Alserihi RF, AlAjmi MF, Khan MS, Husain FM, Ahmed BA (2021) Identification of butyrylcholinesterase and monoamine oxidase B targeted ligands and their putative application in Alzheimer’s treatment: a computational strategy. Curr Pharm Des 27(20):2425–2434. https://doi.org/10.2174/1381612827666210226123240

Article  CAS  PubMed  Google Scholar 

Jabir NR, Shakil S, Tabrez S, Khan MS, Rehman MT, Ahmed BA (2021) In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer’s disease. J Biomol Struct Dyn 39(14):5083–5092. https://doi.org/10.1080/07391102.2020.1784796

Article  CAS  PubMed  Google Scholar 

Haghighijoo Z, Akrami S, Saeedi M, Zonouzi A, Iraji A, Larijani B, Fakherzadeh H, Sharifi F et al (2020) N-Cyclohexylimidazo[1,2-a]pyridine derivatives as multi-target-directed ligands for treatment of Alzheimer’s disease. Bioorg Chem 103:104146. https://doi.org/10.1016/j.bioorg.2020.104146

Article  CAS  PubMed  Google Scholar 

Konecny J, Misiachna A, Hrabinova M, Pulkrabkova L, Benkova M, Prchal L, Kucera T, Kobrlova T et al (2020) Pursuing the complexity of Alzheimer’s disease: discovery of fluoren-9-amines as selective butyrylcholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Biomolecules 11(1):3. https://doi.org/10.3390/biom11010003

Article  CAS  PubMed Central  PubMed  Google Scholar 

Dorababu A (2022) Promising heterocycle-based scaffolds in recent (2019–2021) anti-Alzheimer’s drug design and discovery. Eur J Pharmacol 920:174847. https://doi.org/10.1016/j.ejphar.2022.174847

Article  CAS  PubMed  Google Scholar 

Wójcicka A, Redzicka A (2021) An overview of the biological activity of pyrrolo[3,4-c]pyridine derivatives. Pharmaceuticals (Basel) 14(4):354. https://doi.org/10.3390/ph14040354

Article  CAS  PubMed  Google Scholar 

Jeelan Basha N, Basavarajaiah SM, Shyamsunder K (2022) Therapeutic potential of pyrrole and pyrrolidine analogs: an update. Mol Divers 26(5):2915–2937. https://doi.org/10.1007/s11030-022-10387-8

Article  CAS  PubMed Central  PubMed  Google Scholar 

Istanbullu H, Bayraktar G, Saylam M, Istanbullu H, Bayraktar G, Saylam M (2022) Fused pyridine derivatives: synthesis and biological activities. In: Exploring chemistry with pyridine derivatives. IntechOpen. https://doi.org/10.5772/intechopen.107537

Bianco MdCAD, Marinho DILF, Hoelz LVB, Bastos MM, Boechat N (2021) Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals (Basel) 14(9):893. https://doi.org/10.3390/ph14090893

Article  CAS  PubMed  Google Scholar 

Saigal GYSA, Uddin A, Khan S, Abid M, Khan MM (2021) Synthesis, biological evaluation and docking studies of functionalized pyrrolo[3,4-b]pyridine derivatives. ChemistrySelect 6(9):2323–2334. https://doi.org/10.1002/slct.202004781

Article  CAS  Google Scholar 

Vadukoot AK, Sharma S, Aretz CD, Kumar S, Gautam N, Alnouti Y, Aldrich AL, Heim CE et al (2020) Synthesis and SAR studies of 1H-pyrrolo[2,3-b]pyridine-2-carboxamides as phosphodiesterase 4B (PDE4B) inhibitors. ACS Med Chem Lett 11(10):1848–1854. https://doi.org/10.1021/acsmedchemlett.9b00369

Article  CAS  PubMed Central  PubMed  Google Scholar 

Tzvetkov NT, Stammler H-G, Hristova S, Atanasov AG, Antonov L (2019) (Pyrrolo-pyridin-5-yl)benzamides: BBB permeable monoamine oxidase B inhibitors with neuroprotective effect on cortical neurons. Eur J Med Chem 162:793–809. https://doi.org/10.1016/j.ejmech.2018.11.009

Article  CAS  PubMed 

留言 (0)

沒有登入
gif