Rizos D, Ward F, Duffy P, et al. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality[J]. Mol Reprod Dev. 2002;61(2):234–48. https://doi.org/10.1002/mrd.1153.
Article CAS PubMed Google Scholar
Rienzi L, Vajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature[J]. Hum Reprod Update. 2011;17(1):34–45. https://doi.org/10.1093/humupd/dmq029.
Wang CM, Liu CM, Jia XZ, et al. Expression of mitochondrial transcription factor A in granulosa cells: implications for oocyte maturation and in vitro fertilization outcomes[J]. J Assist Reprod Genet. 2024;41(2):363–70. https://doi.org/10.1007/s10815-023-03001-9.
Bromer JG, Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics[J]. Curr Opin Obstet Gynecol. 2008;20(3):234–41. https://doi.org/10.1097/GCO.0b013e3282fe723d.
Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility[J]. Hum Reprod Update. 2014;20(1):1–11. https://doi.org/10.1093/humupd/dmt044.
Article CAS PubMed Google Scholar
Luddi A, Gori M, Marrocco C, et al. Matrix metalloproteinases and their inhibitors in human cumulus and granulosa cells as biomarkers for oocyte quality estimation[J]. Fertil Steril. 2018;109(5):930–9. https://doi.org/10.1016/j.fertnstert.2018.01.030.
Article CAS PubMed Google Scholar
Iager AE, Kocabas AM, Otu HH, et al. Identification of a novel gene set in human cumulus cells predictive of an oocyte’s pregnancy potential[J]. Fertil Steril. 2013;99(3):745–52. https://doi.org/10.1016/j.fertnstert.2012.10.041.
Article CAS PubMed Google Scholar
Jiang JY, Xiong H, Cao M, et al. Mural granulosa cell gene expression associated with oocyte developmental competence[J]. J Ovarian Res. 2010;3:6. https://doi.org/10.1186/1757-2215-3-6.
Article CAS PubMed PubMed Central Google Scholar
Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality[J]. Fertil Steril. 2013;99(4):979–97. https://doi.org/10.1016/j.fertnstert.2013.01.129.
Article CAS PubMed Google Scholar
Qi F, Liu W, Tan B, et al. BTG2 suppresses renal cell carcinoma progression through N6-methyladenosine[J]. Front Oncol. 2022;12:1049928. https://doi.org/10.3389/fonc.2022.1049928.
Article CAS PubMed PubMed Central Google Scholar
Mao B, Zhang Z, Wang G. BTG2: a rising star of tumor suppressors (review)[J]. Int J Oncol. 2015;46(2):459–64. https://doi.org/10.3892/ijo.2014.2765.
Article CAS PubMed Google Scholar
Yuniati L, Scheijen B, van der Meer LT, et al. Tumor suppressors BTG1 and BTG2: Beyond growth control[J]. J Cell Physiol. 2019;234(5):5379–89. https://doi.org/10.1002/jcp.27407.
Article CAS PubMed Google Scholar
Kawakubo H, Brachtel E, Hayashida T, et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein[J]. Cancer Res. 2006;66(14):7075–82. https://doi.org/10.1158/0008-5472.CAN-06-0379.
Article CAS PubMed Google Scholar
Li F, Liu J, Park ES, et al. The B cell translocation gene (BTG) family in the rat ovary: hormonal induction, regulation, and impact on cell cycle kinetics[J]. Endocrinology. 2009;150(8):3894–902. https://doi.org/10.1210/en.2008-1650.
Article CAS PubMed PubMed Central Google Scholar
Rouault JP, Falette N, Guehenneux F, et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway[J]. Nat Genet. 1996;14(4):482–6. https://doi.org/10.1038/ng1296-482.
Article CAS PubMed Google Scholar
Kim SH, Jung IR, Hwang SS. Emerging role of anti-proliferative protein BTG1 and BTG2[J]. BMB Rep. 2022;55(8):380–8. https://doi.org/10.5483/BMBRep.2022.55.8.092.
Article PubMed PubMed Central Google Scholar
Chermula B, Brazert M, Jeseta M, et al. Transcriptomic pattern of genes regulating protein response and status of mitochondrial activity are related to oocyte maturational competence-A transcriptomic study[J]. Int J Mol Sci. 2019;20(9):2238. https://doi.org/10.3390/ijms20092238.
Article CAS PubMed PubMed Central Google Scholar
Ozegowska K, Dyszkiewicz-Konwinska M, Celichowski P, et al. Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs[J]. Theriogenology. 2018;121:122–33. https://doi.org/10.1016/j.theriogenology.2018.08.019.
Article CAS PubMed Google Scholar
Park JI, Kim SG, Baek MW, et al. B-cell translocation gene 2: expression in the rat ovary and potential association with adenine nucleotide translocase 2 in mitochondria[J]. Mol Cell Endocrinol. 2013;367(1–2):31–40. https://doi.org/10.1016/j.mce.2012.12.013.
Article CAS PubMed Google Scholar
Schmidt J, de Avila J, McLean D. Regulation of protein tyrosine phosphatase 4a1, B-cell translocation gene 2, nuclear receptor subfamily 4a1 and diacylglycerol O-acyltransferase 1 by follicle stimulating hormone in the rat ovary[J]. Reprod Fertil Dev. 2006;18(7):757–65. https://doi.org/10.1071/rd05167.
Article CAS PubMed Google Scholar
Rao M, Zeng Z, Zhang Q, et al. Thyroid autoimmunity is not associated with embryo quality or pregnancy outcomes in euthyroid women undergoing assisted reproductive technology in China[J]. Thyroid. 2023;33(3):380–8. https://doi.org/10.1089/thy.2022.0184.
Article CAS PubMed Google Scholar
Rao M, Wang H, Zhao S, et al. Subclinical hypothyroidism is associated with lower ovarian reserve in women aged 35 years or older[J]. Thyroid. 2020;30(1):95–105. https://doi.org/10.1089/thy.2019.0031.
Article CAS PubMed Google Scholar
Rao M, Yang Z, Su C, et al. Paternal subclinical hypothyroidism affects the clinical outcomes of in vitro fertilization/intracytoplasmic sperm injection[J]. Thyroid. 2021;31(1):12–22. https://doi.org/10.1089/thy.2020.0154.
Article CAS PubMed Google Scholar
Guerif F, Le Gouge A, Giraudeau B, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos[J]. Hum Reprod. 2007;22(7):1973–81. https://doi.org/10.1093/humrep/dem100.
Article CAS PubMed Google Scholar
Chen C, Kattera S. Comparison of pronuclear zygote morphology and early cleavage status of zygotes as additional criteria in the selection of day 3 embryos: a randomized study[J]. Fertil Steril. 2006;85(2):347–52. https://doi.org/10.1016/j.fertnstert.2005.07.1319.
Li J, Du M, Zhang Z, et al. Does a poor-quality embryo have an adverse impact on a good-quality embryo when transferred together?[J]. J Ovarian Res. 2018;11(1):78. https://doi.org/10.1186/s13048-018-0452-6.
Article PubMed PubMed Central Google Scholar
Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts[J]. Curr Opin Obstet Gynecol. 1999;11(3):307–11. https://doi.org/10.1097/00001703-199906000-00013.
Article CAS PubMed Google Scholar
Ghobara T, Gelbaya TA, Ayeleke RO. Cycle regimens for frozen-thawed embryo transfer[J]. Cochrane Database Syst Rev. 2017;7(7):D3414. https://doi.org/10.1002/14651858.CD003414.pub3.
留言 (0)