K. Bell, N. Licht, C. Rübe, Y. Dzierma, Image guidance and positioning accuracy in clinical practice: influence of positioning errors and imaging dose on the real dose distribution for head and neck cancer treatment, Radiation Oncology, 13 (2018) 1-13.
N. Nabavizadeh, D.A. Elliott, Y. Chen, A.S. Kusano, T. Mitin, C.R. Thomas Jr, J.M. Holland, Image guided radiation therapy (IGRT) practice patterns and IGRT’s impact on workflow and treatment planning: Results from a national survey of American Society for Radiation Oncology members, International Journal of Radiation Oncology* Biology* Physics, 94 (2016) 850–857.
P. Alaei, E. Spezi, Imaging dose from cone beam computed tomography in radiation therapy, Physica Medica, 31 (2015) 647-658.
L. Zhou, S. Bai, Y. Zhang, X. Ming, Y. Zhang, J. Deng, Imaging dose, cancer risk and cost analysis in image-guided radiotherapy of cancers, Scientific Reports, 8 (2018) 10076.
Article PubMed PubMed Central Google Scholar
M.M. Rehani, E.R. Melick, R.M. Alvi, R. Doda Khera, S. Batool-Anwar, T.G. Neilan, M. Bettmann, Patients undergoing recurrent CT exams: assessment of patients with non-malignant diseases, reasons for imaging and imaging appropriateness, European radiology, 30 (2020) 1839–1846.
M. Brambilla, J. Vassileva, A. Kuchcinska, M.M. Rehani, Multinational data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action, European radiology, 30 (2020) 2493-2501.
G.S. Ibbott, Patient doses from image-guided radiation therapy, Physica Medica, 72 (2020) 30-31.
G.X. Ding, P. Alaei, B. Curran, R. Flynn, M. Gossman, T.R. Mackie, M. Miften, R. Morin, X.G. Xu, T.C. Zhu, Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM Therapy Physics Committee Task Group 180, Medical Physics, 45 (2018) e84-e99.
Y. Liu, H. Shangguan, Q. Zhang, H. Zhu, H. Shu, Z. Gui, Median prior constrained TV algorithm for sparse view low-dose CT reconstruction, Computers in Biology and Medicine, 60 (2015) 117-131.
X. Tao, H. Zhang, Y. Wang, G. Yan, D. Zeng, W. Chen, J. Ma, VVBP-tensor in the FBP algorithm: its properties and application in low-dose CT reconstruction, IEEE transactions on medical imaging, 39 (2019) 764-776.
E.Y. Sidky, X. Pan, Report on the AAPM deep-learning sparse-view CT grand challenge, Medical Physics, 49 (2022) 4935-4943.
G.-H. Chen, J. Tang, S. Leng, Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets, Medical Physics, 35 (2008) 660-663.
E.Y. Sidky, C.-M. Kao, X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, Journal of X-ray Science and Technology, 14 (2006) 119-139.
E.Y. Sidky, X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, 53 (2008) 4777-4807.
Article PubMed PubMed Central Google Scholar
E.Y. Sidky, X. Pan, I.S. Reiser, R.M. Nishikawa, R.H. Moore, D.B. Kopans, Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms: Enhanced imaging of microcalcifications in digital breast tomosynthesis, Medical Physics, 36 (2009) 4920-4932.
Article PubMed PubMed Central Google Scholar
J. Bian, J.H. Siewerdsen, X. Han, E.Y. Sidky, J.L. Prince, C.A. Pelizzari, X. Pan, Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT, Physics in Medicine and Biology, 55 (2010) 6575-6599.
Article PubMed PubMed Central Google Scholar
E.Y. Sidky, J.H. Jørgensen, X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm, Physics in Medicine and Biology, 57 (2012) 3065-3091.
Article PubMed PubMed Central Google Scholar
X. Han, J. Bian, E.L. Ritman, E.Y. Sidky, X. Pan, Optimization-based reconstruction of sparse images from few-view projections, Physics in Medicine and Biology, 57 (2012) 5245-5273.
Article PubMed PubMed Central Google Scholar
Y. Song, W. Zhang, H. Zhang, Q. Wang, Q. Xiao, Z. Li, X. Wei, J. Lai, X. Wang, W. Li, Q. Zhong, P. Gong, R. Zhong, J. Zhao, Low-dose cone-beam CT (LD-CBCT) reconstruction for image-guided radiation therapy (IGRT) by three-dimensional dual-dictionary learning, Radiation Oncology, 15 (2020) 192.
Article PubMed PubMed Central Google Scholar
L.L. Geyer, U.J. Schoepf, F.G. Meinel, J.W. Nance Jr, G. Bastarrika, J.A. Leipsic, N.S. Paul, M. Rengo, A. Laghi, C.N. De Cecco, State of the art: iterative CT reconstruction techniques, Radiology, 276 (2015) 339-357.
G. Wang, J.C. Ye, B. De Man, Deep learning for tomographic image reconstruction, Nature Machine Intelligence, 2 (2020) 737-748.
F. Zhang, J. Liu, Y. Liu, X. Zhang, Research progress of deep learning in low-dose CT image denoising, Radiation Protection Dosimetry, 199 (2023) 337-346.
L.R. Koetzier, D. Mastrodicasa, T.P. Szczykutowicz, N.R. van der Werf, A.S. Wang, V. Sandfort, A.J. van der Molen, D. Fleischmann, M.J. Willemink, Deep learning image reconstruction for CT: technical principles and clinical prospects, Radiology, 306 (2023) e221257.
K.H. Jin, M.T. McCann, E. Froustey, M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE transactions on image processing, 26 (2017) 4509-4522.
H. Chen, Y. Zhang, M.K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network, IEEE transactions on medical imaging, 36 (2017) 2524-2535.
Article PubMed PubMed Central Google Scholar
Z. Zhang, X. Liang, X. Dong, Y. Xie, G. Cao, A Sparse-View CT Reconstruction Method Based on Combination of DenseNet and Deconvolution, IEEE Transactions on Medical Imaging, 37 (2018) 1407-1417.
Y. Han, J.C. Ye, Framing U-Net via deep convolutional framelets: Application to sparse-view CT, IEEE transactions on medical imaging, 37 (2018) 1418-1429.
D. Hu, J. Liu, T. Lv, Q. Zhao, Y. Zhang, G. Quan, J. Feng, Y. Chen, L. Luo, Hybrid-domain neural network processing for sparse-view CT reconstruction, IEEE Transactions on Radiation and Plasma Medical Sciences, 5 (2020) 88-98.
M. Geng, X. Meng, J. Yu, L. Zhu, L. Jin, Z. Jiang, B. Qiu, H. Li, H. Kong, J. Yuan, Content-noise complementary learning for medical image denoising, IEEE transactions on medical imaging, 41 (2021) 407-419.
Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M.K. Kalra, Y. Zhang, L. Sun, G. Wang, Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss, IEEE Transactions on Medical Imaging, 37 (2018) 1348-1357.
Article PubMed PubMed Central Google Scholar
Z. Huang, X. Liu, R. Wang, J. Chen, P. Lu, Q. Zhang, C. Jiang, Y. Yang, X. Liu, H. Zheng, D. Liang, Z. Hu, Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks, Neurocomputing, 428 (2021) 104-115.
M. Chen, Y.-F. Pu, Y.-C. Bai, Low-dose CT image denoising using residual convolutional network with fractional TV loss, Neurocomputing, 452 (2021) 510-520.
H. Li, X. Yang, S. Yang, D. Wang, G. Jeon, Transformer with double enhancement for low-dose CT denoising, IEEE journal of biomedical and health informatics, 27 (2022) 4660-4671.
L. Zhu, Y. Han, X. Xi, H. Fu, S. Tan, M. Liu, S. Yang, C. Liu, L. Li, B. Yan, STEDNet: Swin transformer-based encoder–decoder network for noise reduction in low-dose CT, Medical Physics, 50 (2023) 4443-4458.
M. Jian, X. Yu, H. Zhang, C. Yang, SwinCT: feature enhancement based low-dose CT images denoising with swin transformer, Multimedia Systems, 30 (2024) 1.
K. Liang, H. Yang, K. Kang, Y. Xing, Improve angular resolution for sparse-view CT with residual convolutional neural network, Medical Imaging 2018: Physics of Medical Imaging, SPIE, 2018, pp. 382-392.
H. Yuan, J. Jia, Z. Zhu, SIPID: A deep learning framework for sinogram interpolation and image denoising in low-dose CT reconstruction, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, 2018, pp. 1521-1524.
H. Lee, J. Lee, H. Kim, B. Cho, S. Cho, Deep-neural-network-based sinogram synthesis for sparse-view CT image reconstruction, IEEE Transactions on Radiation and Plasma Medical Sciences, 3 (2018) 109-119.
J. Dong, J. Fu, Z. He, A deep learning reconstruction framework for X-ray computed tomography with incomplete data, PLoS ONE, 14 (2019) e0224426.
留言 (0)