Ma H, Wang K, Wang B, Wang Z, Liu Y, Wang Q. Design, synthesis, and biological activities of novel coumarin derivatives as pesticide candidates. J Agri Food Chem. 2024;72:4658–68. https://doi.org/10.1021/acs.jafc.3c08161
Yuan H, Yang H, Gao Y, Zhang J, Ren J, Liu X, et al. Discovery of novel spiropiperidinyl-α-methylene-γ-butyrolactones as antifungal and antitoxin agents targeting oxysterol binding protein. J Agri Food Chem. 2024;72:15474–86. https://doi.org/10.1021/acs.jafc.4c02848
Liu D, Mao X, Zhang G, He L, Wang L, Zhang F, et al. Antifungal activity and mechanism of physcion against sclerotium rolfsii, the causal agent of peanut southern blight. J Agri Food Chem. 2024;72:15601–12. https://doi.org/10.1021/acs.jafc.4c02519
Cui ZM, Zhou BH, Fu C, Chen L, Fu J, Cao FJ, et al. Simple analogues of quaternary Benzo[c]phenanthridine alkaloids: discovery of a novel antifungal 2-Phenylphthalazin-2-ium scaffold with excellent potency against phytopathogenic fungi. J Agri Food Chem. 2020;68:15418–27. https://doi.org/10.1021/acs.jafc.0c06507
Li W, Qing S, Zhi W, Yao H, Fu C, Niu X. The pharmacokinetics and anti-inflammatory effects of chelerythrine solid dispersions in vivo. J Drug Deliv Sci Technol. 2017;40:51–8. https://doi.org/10.1016/j.jddst.2017.05.023
Fan L, Fan Y, Liu L, Tao W, Shan X, Dong Y, et al. Chelerythrine attenuates the inflammation of lipopolysaccharide-induced acute lung inflammation through NF-κB signaling pathway mediated by Nrf2. Orig Res. 2018;9:1047. https://doi.org/10.3389/fphar.2018.01047
Hatae N, Fujita E, Shigenobu S, Shimoyama S, Ishihara Y, Kurata Y, et al. Antiproliferative activity of O4-benzo[c]phenanthridine alkaloids against HCT-116 and HL-60 tumor cells. Bioorg Med Chem Lett. 2015;25:2749–52. https://doi.org/10.1016/j.bmcl.2015.05.031
Chen XM, Zhang M, Fan PL, Qin YH, Zhao HW. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines Retraction in /10.3892/ol.2024.14561. Oncol Lett. 2016;11:3917–24. https://doi.org/10.3892/ol.2016.4520
Article PubMed PubMed Central Google Scholar
Miao F, Yang XJ, Ma YN, Zheng F, Song XP, Zhou L. Structural modification of sanguinarine and chelerythrine and their in vitro acaricidal activity against psoroptes cuniculi. Chem Pharm Bull. 2012;60:1508–13.
Yao JY, Shen JY, Li XL, Xu Y, Hao GJ, Pan XY, et al. Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idella). Parasitol Res. 2010;107:1035–42. https://doi.org/10.1007/s00436-010-1966-z
Lv P, Chen Y, Shi T, Wu X, Li QX, Hua R. Synthesis and fungicidal activities of sanguinarine derivatives. Pest Biochem Physiol. 2018;147:3–10. https://doi.org/10.1016/j.pestbp.2017.06.009
Yang SS, Lv QY, Fu J, Zhang TY, Du YS, Yang XJ, et al. New 7-Chloro-9-methyl-2-phenyl-3,4-dihydro-β-carbolin-2-iums as promising fungicide candidates: Design, synthesis, and bioactivity. J Agri Food Chem. 2022;70:4256–66. https://doi.org/10.1021/acs.jafc.1c07278
Zhang S, Leng T, Zhang Q, Zhao Q, Nie X, Yang L. Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed Pharmacother. 2018;102:302–8. https://doi.org/10.1016/j.biopha.2018.03.071
Qin SQ, Li LC, Song JR, et al. Structurally simple phenanthridine analogues based on nitidine and their antitumor activities. Molecules. 2019;24:437. https://doi.org/10.3390/molecules24030437Scopus
Article PubMed PubMed Central Google Scholar
Zhang G, Li C, Li Y, Chen D, Li Z, Ouyang G, et al. Discovery and mechanism of azatryptanthrin derivatives as novel anti-phytopathogenic bacterial agents for potent bactericide candidates. J Agri Food Chem. 2023;71:6288–300. https://doi.org/10.1021/acs.jafc.3c01120
Zhu L, Zhou B, Zhang B, Xu M, Geng H, Zhou L. New 2-Aryl-7,8-dimethoxy-3,4-dihydroisoquinolin-2-ium salts as potential antifungal agents: synthesis, bioactivity and structure-activity relationships. Sci Rep. 2017;7:7537. https://doi.org/10.1038/s41598-017-07303-8
Article PubMed PubMed Central Google Scholar
Cabanillas BJ, Le Lamer A-C, Castillo D, Arevalo J, Estevez Y, Rojas R, et al. Dihydrochalcones and benzoic acid derivatives from piper dennisii. Planta Med. 2012;78:914–8. https://doi.org/10.1055/s-0031-1298459
Moon TS, Gonzales MX, Sun JJ, Kim A, Fox PE, Minhajuddin AT, et al. Recent cocaine use and the incidence of hemodynamic events during general anesthesia: a retrospective cohort study. J Clin Anesth. 2019;55:146–50. https://doi.org/10.1016/j.jclinane.2018.12.028
Gu X, Jiang Y, Chen J, Zhang Y, Guan M, Li X, et al. Synthesis and biological evaluation of bifendate derivatives bearing acrylamide moiety as novel antioxidant agents. Euron J Med Chem. 2019;162:59–69. https://doi.org/10.1016/j.ejmech.2018.11.003
Chen W, Li Y, Zhou Y, Ma Y, Li Z. Design, synthesis and SAR study of novel sulfonylurea derivatives containing arylpyrimidine moieties as potential anti-phytopathogenic fungal agents. Chin Chem Lett. 2019;30:2160–2. https://doi.org/10.1016/j.cclet.2019.04.072
Hou Z, Yang R, Zhang C, Zhu LF, Miao F, Yang XJ, et al. 2-(Substituted phenyl)-3,4-dihydroisoquinolin-2-iums as novel antifungal lead compounds: Biological evaluation and structure-activity relationships. Molecules. 2013;18:10413–24.
Article PubMed PubMed Central Google Scholar
Yang R, Gao ZF, Zhao JY, Li WB, Zhou L, Miao F. New class of 2-Aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: Synthesis, bioactivity and structure–activity relationships. J Agri Food Chem. 2015;63:1906–14. https://doi.org/10.1021/jf505609z
Hou Z, Yang R, Zhang C, Zhu LF, Miao F, Yang XJ, et al. 2-(Substituted phenyl)-3,4-dihydroisoquinolin-2-iums as novel antifungal lead compounds: Biological evaluation and structure-activity relationships. Chem Pharm Bull. 2013;18:10413–24.
Chen D, Hao G, Song B. Finding the missing property concepts in pesticide-likeness. J Agri Food Chem. 2022;70:10090–9. https://doi.org/10.1021/acs.jafc.2c02757
Zhou MY, Kong SS, Zhang LQ, Zhao M, Duan JA, Ou-yang Z, et al. CuBr2 catalyzed bromination/oxidation of isochromans to benzaldehyde derivatives. Tetrahedron Lett. 2013;54:3962–4. https://doi.org/10.1016/j.tetlet.2013.05.078
Chen W, Zhang R, Chen Y, Yu P, Lan Y, Xu H, et al. Design, synthesis and mechanism study of novel natural-derived isoquinoline derivatives as aantifungal agents. Mol Divers. 2023;27:1011–22. https://doi.org/10.1007/s11030-022-10463-z
Zhang C, Zhao C, Zheng H, Li L, Zheng Y, Wu Z. Design, synthesis, and study of the dual action mode of novel N-Thienyl-1,5-disubstituted-4-pyrazole carboxamides against nigrospora oryzae. J Agri Food Chem. 2023;71:7210–20. https://doi.org/10.1021/acs.jafc.3c00269
留言 (0)