Design, synthesis and antifungal study of novel 2-aryl-3,4-dihydroisoquinolin-2-ium salts containing benzoate moieties

Ma H, Wang K, Wang B, Wang Z, Liu Y, Wang Q. Design, synthesis, and biological activities of novel coumarin derivatives as pesticide candidates. J Agri Food Chem. 2024;72:4658–68. https://doi.org/10.1021/acs.jafc.3c08161

Article  Google Scholar 

Yuan H, Yang H, Gao Y, Zhang J, Ren J, Liu X, et al. Discovery of novel spiropiperidinyl-α-methylene-γ-butyrolactones as antifungal and antitoxin agents targeting oxysterol binding protein. J Agri Food Chem. 2024;72:15474–86. https://doi.org/10.1021/acs.jafc.4c02848

Article  Google Scholar 

Liu D, Mao X, Zhang G, He L, Wang L, Zhang F, et al. Antifungal activity and mechanism of physcion against sclerotium rolfsii, the causal agent of peanut southern blight. J Agri Food Chem. 2024;72:15601–12. https://doi.org/10.1021/acs.jafc.4c02519

Article  Google Scholar 

Cui ZM, Zhou BH, Fu C, Chen L, Fu J, Cao FJ, et al. Simple analogues of quaternary Benzo[c]phenanthridine alkaloids: discovery of a novel antifungal 2-Phenylphthalazin-2-ium scaffold with excellent potency against phytopathogenic fungi. J Agri Food Chem. 2020;68:15418–27. https://doi.org/10.1021/acs.jafc.0c06507

Article  Google Scholar 

Li W, Qing S, Zhi W, Yao H, Fu C, Niu X. The pharmacokinetics and anti-inflammatory effects of chelerythrine solid dispersions in vivo. J Drug Deliv Sci Technol. 2017;40:51–8. https://doi.org/10.1016/j.jddst.2017.05.023

Article  Google Scholar 

Fan L, Fan Y, Liu L, Tao W, Shan X, Dong Y, et al. Chelerythrine attenuates the inflammation of lipopolysaccharide-induced acute lung inflammation through NF-κB signaling pathway mediated by Nrf2. Orig Res. 2018;9:1047. https://doi.org/10.3389/fphar.2018.01047

Article  Google Scholar 

Hatae N, Fujita E, Shigenobu S, Shimoyama S, Ishihara Y, Kurata Y, et al. Antiproliferative activity of O4-benzo[c]phenanthridine alkaloids against HCT-116 and HL-60 tumor cells. Bioorg Med Chem Lett. 2015;25:2749–52. https://doi.org/10.1016/j.bmcl.2015.05.031

Article  PubMed  Google Scholar 

Chen XM, Zhang M, Fan PL, Qin YH, Zhao HW. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines Retraction in /10.3892/ol.2024.14561. Oncol Lett. 2016;11:3917–24. https://doi.org/10.3892/ol.2016.4520

Article  PubMed  PubMed Central  Google Scholar 

Miao F, Yang XJ, Ma YN, Zheng F, Song XP, Zhou L. Structural modification of sanguinarine and chelerythrine and their in vitro acaricidal activity against psoroptes cuniculi. Chem Pharm Bull. 2012;60:1508–13.

Article  Google Scholar 

Yao JY, Shen JY, Li XL, Xu Y, Hao GJ, Pan XY, et al. Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idella). Parasitol Res. 2010;107:1035–42. https://doi.org/10.1007/s00436-010-1966-z

Article  PubMed  Google Scholar 

Lv P, Chen Y, Shi T, Wu X, Li QX, Hua R. Synthesis and fungicidal activities of sanguinarine derivatives. Pest Biochem Physiol. 2018;147:3–10. https://doi.org/10.1016/j.pestbp.2017.06.009

Article  Google Scholar 

Yang SS, Lv QY, Fu J, Zhang TY, Du YS, Yang XJ, et al. New 7-Chloro-9-methyl-2-phenyl-3,4-dihydro-β-carbolin-2-iums as promising fungicide candidates: Design, synthesis, and bioactivity. J Agri Food Chem. 2022;70:4256–66. https://doi.org/10.1021/acs.jafc.1c07278

Article  Google Scholar 

Zhang S, Leng T, Zhang Q, Zhao Q, Nie X, Yang L. Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed Pharmacother. 2018;102:302–8. https://doi.org/10.1016/j.biopha.2018.03.071

Article  PubMed  Google Scholar 

Qin SQ, Li LC, Song JR, et al. Structurally simple phenanthridine analogues based on nitidine and their antitumor activities. Molecules. 2019;24:437. https://doi.org/10.3390/molecules24030437Scopus

Article  PubMed  PubMed Central  Google Scholar 

Zhang G, Li C, Li Y, Chen D, Li Z, Ouyang G, et al. Discovery and mechanism of azatryptanthrin derivatives as novel anti-phytopathogenic bacterial agents for potent bactericide candidates. J Agri Food Chem. 2023;71:6288–300. https://doi.org/10.1021/acs.jafc.3c01120

Article  Google Scholar 

Zhu L, Zhou B, Zhang B, Xu M, Geng H, Zhou L. New 2-Aryl-7,8-dimethoxy-3,4-dihydroisoquinolin-2-ium salts as potential antifungal agents: synthesis, bioactivity and structure-activity relationships. Sci Rep. 2017;7:7537. https://doi.org/10.1038/s41598-017-07303-8

Article  PubMed  PubMed Central  Google Scholar 

Cabanillas BJ, Le Lamer A-C, Castillo D, Arevalo J, Estevez Y, Rojas R, et al. Dihydrochalcones and benzoic acid derivatives from piper dennisii. Planta Med. 2012;78:914–8. https://doi.org/10.1055/s-0031-1298459

Article  PubMed  Google Scholar 

Moon TS, Gonzales MX, Sun JJ, Kim A, Fox PE, Minhajuddin AT, et al. Recent cocaine use and the incidence of hemodynamic events during general anesthesia: a retrospective cohort study. J Clin Anesth. 2019;55:146–50. https://doi.org/10.1016/j.jclinane.2018.12.028

Article  PubMed  Google Scholar 

Gu X, Jiang Y, Chen J, Zhang Y, Guan M, Li X, et al. Synthesis and biological evaluation of bifendate derivatives bearing acrylamide moiety as novel antioxidant agents. Euron J Med Chem. 2019;162:59–69. https://doi.org/10.1016/j.ejmech.2018.11.003

Article  Google Scholar 

Chen W, Li Y, Zhou Y, Ma Y, Li Z. Design, synthesis and SAR study of novel sulfonylurea derivatives containing arylpyrimidine moieties as potential anti-phytopathogenic fungal agents. Chin Chem Lett. 2019;30:2160–2. https://doi.org/10.1016/j.cclet.2019.04.072

Article  Google Scholar 

Hou Z, Yang R, Zhang C, Zhu LF, Miao F, Yang XJ, et al. 2-(Substituted phenyl)-3,4-dihydroisoquinolin-2-iums as novel antifungal lead compounds: Biological evaluation and structure-activity relationships. Molecules. 2013;18:10413–24.

Article  PubMed  PubMed Central  Google Scholar 

Yang R, Gao ZF, Zhao JY, Li WB, Zhou L, Miao F. New class of 2-Aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: Synthesis, bioactivity and structure–activity relationships. J Agri Food Chem. 2015;63:1906–14. https://doi.org/10.1021/jf505609z

Article  Google Scholar 

Hou Z, Yang R, Zhang C, Zhu LF, Miao F, Yang XJ, et al. 2-(Substituted phenyl)-3,4-dihydroisoquinolin-2-iums as novel antifungal lead compounds: Biological evaluation and structure-activity relationships. Chem Pharm Bull. 2013;18:10413–24.

Google Scholar 

Chen D, Hao G, Song B. Finding the missing property concepts in pesticide-likeness. J Agri Food Chem. 2022;70:10090–9. https://doi.org/10.1021/acs.jafc.2c02757

Article  Google Scholar 

Zhou MY, Kong SS, Zhang LQ, Zhao M, Duan JA, Ou-yang Z, et al. CuBr2 catalyzed bromination/oxidation of isochromans to benzaldehyde derivatives. Tetrahedron Lett. 2013;54:3962–4. https://doi.org/10.1016/j.tetlet.2013.05.078

Article  Google Scholar 

Chen W, Zhang R, Chen Y, Yu P, Lan Y, Xu H, et al. Design, synthesis and mechanism study of novel natural-derived isoquinoline derivatives as aantifungal agents. Mol Divers. 2023;27:1011–22. https://doi.org/10.1007/s11030-022-10463-z

Article  PubMed  Google Scholar 

http://www.swissadme.ch/

Zhang C, Zhao C, Zheng H, Li L, Zheng Y, Wu Z. Design, synthesis, and study of the dual action mode of novel N-Thienyl-1,5-disubstituted-4-pyrazole carboxamides against nigrospora oryzae. J Agri Food Chem. 2023;71:7210–20. https://doi.org/10.1021/acs.jafc.3c00269

Article  Google Scholar 

留言 (0)

沒有登入
gif