Whole Exome Sequencing Reveals Candidate Variants in Ion Channel Genes for Pelvic Muscle Dysfunction in Young Females with a Family History

Muro S, Tsukada Y, Ito M, Akita K. The series of smooth muscle structures in the pelvic floors of men: dynamic coordination of smooth and skeletal muscles. Clin Anat. 2021;34(2):272–82.

Article  PubMed  Google Scholar 

Muro S, Akita K. Novel combination method of wide-range serial sectioning and 3D reconstruction visualizing both macro-level dynamics and micro-level interactions in an attempt to analyze the female pelvic floor. Anat Sci Int. 2023;98(3):343–52.

Article  PubMed  PubMed Central  Google Scholar 

Hafen B, Shook M, Burns B. Hafen B, Shook M, Burns B. Anatomy, Smooth Muscle. In: StatPearls. Treasure Island (FL): StatPearls 2023; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532857/

Google Scholar 

McCuller C, Jessu R, Physiology Callahan AL. Physiology, Skeletal Muscle. In: StatPearls. Treasure Island: StatPearls Publishing 2023; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537139/

Google Scholar 

Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The sarcoplasmic reticulum of skeletal muscle cells: a labyrinth of membrane contact sites. Biomolecules. 2022;12(4):488.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 2015;7(2):a006023.

Article  PubMed  PubMed Central  Google Scholar 

Bump RC, Mattiasson A, Bø K, Brubaker LP, DeLancey JO, Klarskov P, et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol. 1996;175(1):10–7.

Article  CAS  PubMed  Google Scholar 

Frasuńska J, Pollak A, Turczyn P, Kutkowska-Kaźmierczak A, Pepłowski J, Płoski R, et al. A study of Polish family with scoliosis and limb contractures expands the MYH3 disease spectrum. Genes (Basel). 2024;15(1):125.

Article  PubMed  Google Scholar 

Piovesan D, Del Conte A, Clementel D, Monzon AM, Bevilacqua M, Aspromonte MC, et al. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 2023;51(D1):D438–44.

Article  CAS  PubMed  Google Scholar 

Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature. 2006;443(7108):230–3.

Article  CAS  PubMed  Google Scholar 

Bernareggi A, Bosutti A, Massaria G, Giniatullin R, Malm T, Sciancalepore M, et al. The state of the art of PIEZO1 channels in skeletal muscle regeneration. Int J Mol Sci. 2022;23(12):6616.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma N, Chen D, Lee JH, Kuri P, Hernandez EB, Kocan J, et al. Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. Sci Adv. 2022;8(11):eabn0485.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi P, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proc Natl Acad Sci U S A. 2018;115(15):3864–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammers DW, Hart CC, Matheny MK, Heimsath EG, Lee YI, Hammer JA, et al. Filopodia powered by class x myosin promote fusion of mammalian myoblasts. eLife. 2021;10:e72419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lace B, Micule I, Kenina V, Setlere S, Strautmanis J, Kazaine I, et al. Overview of neuromuscular disorder molecular diagnostic experience for the population of Latvia. Neurol Genet. 2022;8(3):e685.

Article  PubMed  PubMed Central  Google Scholar 

Suominen T, Schoser B, Raheem O, Auvinen S, Walter M, Krahe R, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol. 2008;255(11):1731–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ÖzTunçer G, Sanri A, Aydin S, Hergüner Ö, Özgün N, Kömür M, et al. Clinical and genetic spectrum of Myotonia Congenita in Turkish children. J Neuromuscul Dis. 2023;10(5):915–24.

Article  Google Scholar 

Bryan ES, Alsaleem M. Myotonia Congenita. In: StatPearls. Treasure Island: StatPearls Publishing 2023; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562335/

Google Scholar 

Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in northern Scandinavia. Eur J Hum Genet. 2001;9(12):903–9.

Article  CAS  PubMed  Google Scholar 

Pedersen TH, Riisager A, de Paoli FV, Chen TY, Nielsen OB. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. J Gen Physiol. 2016;147(4):291–308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Platt D, Griggs R. Skeletal muscle channelopathies: new insights into the periodic paralyses and nondystrophic myotonias. Curr Opin Neurol. 2009;22(5):524–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet. 1995;57(6):1325–34.

CAS  PubMed  PubMed Central  Google Scholar 

Hebeisen S, Fahlke C. Carboxy-terminal truncations modify the outer pore vestibule of muscle chloride channels. Biophys J. 2005;89(3):1710–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richardson RC, Tarleton JC, Bird TD, Gospe SM. Truncating CLCN1 mutations in myotonia congenita: variable patterns of inheritance. Muscle Nerve. 2014;49(4):593–600.

Article  CAS  PubMed  Google Scholar 

Dunø M, Colding-Jørgensen E, Grunnet M, Jespersen T, Vissing J, Schwartz M. Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet. 2004;12(9):738–43.

Article  PubMed  Google Scholar 

Hernández-Ochoa EO, Pratt SJP, Lovering RM, Schneider MF. Critical role of intracellular RyR1 calcium release channels in skeletal muscle function and disease. Front Physiol. 2015;6:420.

PubMed  Google Scholar 

des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, et al. Structural basis for gating and activation of RyR1. Cell. 2016;167(1):145–57.e17.

Article  PubMed  PubMed Central  Google Scholar 

Tae H, Casarotto MG, Dulhunty AF. Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. Eur Biophys J. 2009;39(1):51–9.

Article  CAS  PubMed  Google Scholar 

Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci. 2017;26(1):52–68.

Article  PubMed  Google Scholar 

Palty R, Isacoff EY. Cooperative binding of stromal interaction molecule 1 (STIM1) to the N and C termini of calcium release-activated calcium modulator 1 (Orai1). J Biol Chem. 2016;291(1):334–41.

Article  CAS  PubMed  Google Scholar 

Tiffner A, Maltan L, Weiß S, Derler I. The orai pore opening mechanism. Int J Mol Sci. 2021;22(2):533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F, Dirksen RT. Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun. 2013;4:2805.

Article  PubMed 

留言 (0)

沒有登入
gif