A novel case of glial transdifferentiation in renal medullary carcinoma brain metastasis

Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346. https://doi.org/10.1016/j.ccr.2013.08.001

Article  CAS  PubMed  Google Scholar 

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555: 469–474 https://doi.org/10.1038/nature26000

Cheng JX, Tretiakova M, Gong C, Mandal S, Krausz T, Taxy JB (2008) Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol 21:647–652. https://doi.org/10.1038/modpathol.2008.44

Article  CAS  PubMed  Google Scholar 

Chi SN, Yi JS, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey BD, Reid JM, Piao J, Saguilig L, Alonzo TA al (2023) Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: results from NCI-COG pediatric MATCH APEC1621C. J Natl Cancer Inst 115:1355–1363. https://doi.org/10.1093/jnci/djad085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conway E, Healy E, Bracken AP (2015) PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol 37:42–48. https://doi.org/10.1016/j.ceb.2015.10.003

Article  CAS  PubMed  Google Scholar 

Davis CJ Jr., Mostofi FK, Sesterhenn IA (1995) Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol 19:1–11. https://doi.org/10.1097/00000478-199501000-00001

Article  PubMed  Google Scholar 

Fedele M, Cerchia L, Pegoraro S, Sgarra R, Manfioletti G (2019) Proneural-mesenchymal transition: phenotypic plasticity to acquire Multitherapy Resistance in Glioblastoma. Int J Mol Sci 20. https://doi.org/10.3390/ijms20112746

Fedele M, Cerchia L, Battista S (2024) Subtype transdifferentiation in Human Cancer: the power of tissue plasticity in Tumor Progression. Cells 13. https://doi.org/10.3390/cells13040350

Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Guc E, Kapourani CA, Byron A, Ferguson KM (2021) al Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184: 2454–2470 e2426 https://doi.org/10.1016/j.cell.2021.03.023

Gounder M, Schoffski P, Jones RL, Agulnik M, Cote GM, Villalobos VM, Attia S, Chugh R, Chen TW, Jahan Tet al et al (2020) Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol 21:1423–1432. https://doi.org/10.1016/S1470-2045(20)30451-4

Article  CAS  PubMed  Google Scholar 

Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644. https://doi.org/10.1016/j.cell.2011.07.026

Article  CAS  PubMed  Google Scholar 

Hasselblatt M, Johann PD, Kool M, Fruhwald MC (2017) Reduced histone H3 K27 trimethylation is encountered in about 50% of atypical teratoid/rhabdoid tumors (AT/RT) but is not associated with molecular subgroup status and outcome. Acta Neuropathol 134:817–818. https://doi.org/10.1007/s00401-017-1766-y

Article  CAS  PubMed  Google Scholar 

Hasselblatt M, Thomas C, Federico A, Bens S, Hellstrom M, Casar-Borota O, Kordes U, Neumann JE, Dottermusch M, Rodriguez FJ al (2022) Low-grade diffusely infiltrative tumour (LGDIT), SMARCB1-mutant: a clinical and histopathological distinct entity showing epigenetic similarity with ATRT-MYC. Neuropathol Appl Neurobiol 48:e12797. https://doi.org/10.1111/nan.12797

Article  CAS  PubMed  Google Scholar 

Hong AL, Tseng YY, Wala JA, Kim WJ, Kynnap BD, Doshi MB, Kugener G, Sandoval GJ, Howard TP, Li J al (2019) Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. Elife 8. https://doi.org/10.7554/eLife.44161

Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R Ladanyi M (2024) overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. Cancer Discov 14: 965–981 https://doi.org/10.1158/2159-8290.CD-23-0110

Keller M, Blom M, Conze LL, Guo M, Hagerstrand D, Aspenstrom P (2022) Altered cytoskeletal status in the transition from proneural to mesenchymal glioblastoma subtypes. Sci Rep 12:9838. https://doi.org/10.1038/s41598-022-14063-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilsdonk MJ, Romeijn TR, Kelder W, van Kempen LC, Diercks GF (2020) Angiosarcomatous transdifferentiation of metastatic melanoma. J Cutan Pathol 47:1211–1214. https://doi.org/10.1111/cup.13857

Article  PubMed  PubMed Central  Google Scholar 

Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 22:128–134. https://doi.org/10.1038/nm.4036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, Blattner M, Worst B, Heilig CE, Beck Ket al et al (2021) Sarcoma classification by DNA methylation profiling. Nat Commun 12:498. https://doi.org/10.1038/s41467-020-20603-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostelecky N, Wadhwani N, Golubovich I, Vormittag-Nocito E, Gao J, Jennings L, Caron M, Jamshidi P, Ahrendsen JT, Castellani Ret al et al (2024) Transdifferentiation of metastatic melanoma into cerebellar angiosarcoma. J Neuropathol Exp Neurol: Doi. https://doi.org/10.1093/jnen/nlae075

Article  Google Scholar 

Kotlov N, Shaposhnikov K, Tazearslan C, Chasse M, Baisangurov A, Podsvirova S, Fernandez D, Abdou M, Kaneunyenye L, Morgan Ket al et al (2024) Procrustes is a machine-learning approach that removes cross-platform batch effects from clinical RNA sequencing data. Commun Biol 7:392. https://doi.org/10.1038/s42003-024-06020-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanzi C, Arrighetti N, Pasquali S, Cassinelli G (2023) Targeting EZH2 in SMARCB1-deficient sarcomas: advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 215:115727. https://doi.org/10.1016/j.bcp.2023.115727

Article  CAS  PubMed  Google Scholar 

Lebenthal JM, Kontoyiannis PD, Hahn AW, Lim ZD, Rao P, Cheng JP, Chan B, Daw NC, Sheth RA, Karam JAet al et al (2024) Clinical characteristics, management, and outcomes of patients with renal medullary carcinoma: a single-center retrospective analysis of 135 patients. Eur Urol Oncol: Doi. https://doi.org/10.1016/j.euo.2024.07.002

Article  Google Scholar 

Mondello P, Fama A, Larson MC, Feldman AL, Villasboas JC, Yang ZZ, Galkin I, Svelolkin V, Postovalova E, Bagaev Aet al et al (2021) Lack of intrafollicular memory CD4 + T cells is predictive of early clinical failure in newly diagnosed follicular lymphoma. Blood Cancer J 11:130. https://doi.org/10.1038/s41408-021-00521-4

Article  PubMed  PubMed Central  Google Scholar 

Msaouel P, Tannir NM, Walker CL (2018) A model linking sickle cell hemoglobinopathies and SMARCB1 loss in renal medullary carcinoma. Clin Cancer Res 24:2044–2049 Doi 10.1158/1078 – 0432.CCR-17-3296

Article  CAS  PubMed  Google Scholar 

Msaouel P, Hong AL, Mullen EA, Atkins MB, Walker CL, Lee CH, Carden MA, Genovese G, Linehan WM, Rao Pet al et al (2019) Updated recommendations on the diagnosis, management, and clinical Trial Eligibility Criteria for patients with renal medullary carcinoma. Clin Genitourin Cancer 17:1–6. https://doi.org/10.1016/j.clgc.2018.09.005

Article  PubMed  Google Scholar 

Msaouel P, Walker CL, Genovese G, Tannir NM (2020) Molecular hallmarks of renal medullary carcinoma: more to c-MYC than meets the eye. Mol Cell Oncol 7:1777060. https://doi.org/10.1080/23723556.2020.1777060

Article  PubMed  PubMed Central  Google Scholar 

Msaouel P, Malouf GG, Su X, Yao H, Tripathi DN, Soeung M, Gao J, Rao P, Coarfa C Creighton CJ (2020) Comprehensive Molecular Characterization Identifies Distinct Genomic and Immune Hallmarks of Renal Medullary Carcinoma. Cancer Cell 37: 720–734 e713 https://doi.org/10.1016/j.ccell.2020.04.002

Patel AS, Yanai I (2024) A developmental constraint model of cancer cell states and tumor heterogeneity. Cell 187:2907–2918. https://doi.org/10.1016/j.cell.2024.04.032

Article  CAS  PubMed  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Google Scholar 

Phillips D, Schurch CM, Khodadoust MS, Kim YH, Nolan GP, Jiang S (2021) Highly multiplexed phenotyping of Immunoregulatory Proteins in the Tumor Microenvironment by CODEX Tissue Imaging. Front Immunol 12:687673. https://doi.org/10.3389/fimmu.2021.687673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schaeffer EM, Guzzo TJ, Furge KA, Netto G, Westphal M, Dykema K, Yang X, Zhou M, Teh BT, Pavlovich CP (2010) Renal medullary carcinoma: molecular, pathological and clinical evidence for treatment with topoisomerase-inhibiting therapy. BJU Int 106:62–65. https://doi.org/10.1111/j.1464-410X.2009.09139.x

Article  PubMed  Google Scholar 

Shapiro DD, Soeung M, Perelli L, Dondossola E, Surasi DS, Tripathi DN, Bertocchio JP, Carbone F, Starbuck MW, Van Alstine ML et al (2021) Association of High-Intensity Exercise with Renal Medullary Carcinoma in Individuals with Sickle Cell Trait: Clinical Observations and Experimental Animal Studies. Cancers (Basel) 13:

留言 (0)

沒有登入
gif