Development and validation of machine learning models for MASLD: based on multiple potential screening indicators

Front. Endocrinol.

Sec. Systems Endocrinology

Volume 15 - 2024 | doi: 10.3389/fendo.2024.1449064

Provisionally accepted

The final, formatted version of the article will be published soon.

You have multiple emails registered with Frontiers:

Please enter your email address:

If you already have an account, please login

You don't have a Frontiers account ? You can register here

Background Multifaceted factors play a crucial role in the prevention and treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to utilize multifaceted indicators to construct MASLD risk prediction machine learning models and explore the core factors within these models. Methods MASLD risk prediction models were constructed based on seven machine learning algorithms using all variables, insulin-related variables, demographic characteristics variables, and other indicators, respectively. Subsequently, the partial dependence plot(PDP) method and SHapley Additive exPlanations (SHAP) were utilized to explain the roles of important variables in the model to filter out the optimal indicators for constructing the MASLD risk model. Results Ranking the feature importance of the Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed using all variables found that both homeostasis model assessment of insulin resistance (HOMA-IR) and triglyceride glucose-waist circumference (TyG-WC) were the first and second most important variables. The MASLD risk prediction model constructed using the variables with top 10 importance was superior to the previous model. The PDP and SHAP methods were further utilized to screen the best indicators (including HOMA-IR, TyG-WC, age, aspartate aminotransferase (AST), and ethnicity) for constructing the model, and the mean area under the curve value of the models was 0.960. Conclusions HOMA-IR and TyG-WC are core factors in predicting MASLD risk. Ultimately, our study constructed the optimal MASLD risk prediction model using HOMA-IR, TyG-WC, age, AST, and ethnicity.

Keywords: Metabolic dysfunction-associated steatotic liver disease, machine learning, Insulin Resistance, triglyceride glucose, Risk prediction model

Received: 19 Jun 2024; Accepted: 16 Dec 2024.

Copyright: © 2024 . This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

留言 (0)

沒有登入
gif