Castro E, Garcia AH, Zavala G, Echegoyen L. Fullerenes in biology and medicine. J Mater Chem B. 2017;5(32):6523–35.
Article CAS PubMed PubMed Central Google Scholar
Kokubo K, Shirakawa S, Kobayashi N, Aoshima H, Oshima T. Facile and scalable synthesis of a highly Hydroxylated Water-Soluble Fullerenol as a single nanoparticle. Nano Res. 2011;4(2):204–15.
Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano. 2008;2(2):327–33.
Article CAS PubMed Google Scholar
Yang S, Xiong F, Chen K, Chang Y, Bai X, Yin W, Gu W, Wang Q, Li J, Chen G. Impact of Titanium Dioxide and Fullerenol nanoparticles on Caco-2 gut epithelial cells. J Nanosci Nanotechnol. 2018;18(4):2387–93.
Article CAS PubMed Google Scholar
Shafiq F, Iqbal M, Raza SH, Akram NA, Ashraf M. Fullerenol [60] nano-cages for protection of crops against oxidative stress: a critical review. J Plant Growth Regul. 2023;42(3):1267–90.
Li Y, Xu T, Huang Q, Zhu L, Yan Y, Peng P, Li F-F. C60 fullerenol to stabilize and activate Ru nanoparticles for highly efficient hydrogen evolution reaction in alkaline media. ACS Catal. 2023;13(11):7597–605.
Seke M, Zivkovic M, Stankovic A. Versatile applications of fullerenol nanoparticles. Int J Pharm. 2024;660:124313.
Article CAS PubMed Google Scholar
Qin Y, Chen K, Gu W, Dong X, Lei R, Chang Y, Bai X, Xia S, Zeng L, Zhang J, et al. Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics. J Nanobiotechnol. 2018;16(1):54.
Živančev J, Bulut S, Kocić-Tanackov S, Jović D, Fišteš A, Antić I, Djordjevic A. The impact of fullerenol nanoparticles on the growth of toxigenic aspergillus flavus and aflatoxins production in vitro and in corn flour. J Food Sci 2024.
Torres VM, Srdjenovic B, Jacevic V, Simic VD, Djordjevic A, Simplício AL. Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats. Pharmacol Rep. 2010;62(4):707–18.
Article CAS PubMed Google Scholar
Çavaş T, Çinkılıç N, Vatan Ö, Yılmaz D. Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts. Pestic Biochem Physiol. 2014;114:1–7.
Injac R, Prijatelj M, Strukelj B. Fullerenol Nanoparticles: Toxicity and Antioxidant Activity. In: Oxidative Stress and Nanotechnology: Methods and Protocols. Edited by Armstrong D, Bharali DJ. Totowa, NJ: Humana Press; 2013: 75–100.
Indeglia PA, Georgieva AT, Krishna VB, Martyniuk CJ, Bonzongo J-CJ. Toxicity of functionalized fullerene and fullerene synthesis chemicals. Chemosphere. 2018;207:1–9.
Article CAS PubMed Google Scholar
Opinion on Fullerenes. Hydroxylated Fullerenes and hydrated forms of Hydroxylated Fullerenes (nano) [https://www.health.ec.europa.eu/publications/fullerenes-hydroxylated-fullerenes-and-hydrated-forms-hydroxylated-fullerenes-nano_en]
Chen YW, Hwang KC, Yen CC, Lai YL. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol. 2004;287(1):R21–26.
Article CAS PubMed Google Scholar
Yang LY, Gao JL, Gao T, Dong P, Ma L, Jiang FL, Liu Y. Toxicity of polyhydroxylated fullerene to mitochondria. J Hazard Mater. 2016;301:119–26.
Article CAS PubMed Google Scholar
Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SAK, Christensen FM. Review of fullerene toxicity and exposure – Appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol. 2010;58(3):455–73.
Article CAS PubMed Google Scholar
Brant JA, Labille J, Robichaud CO, Wiesner M. Fullerol cluster formation in aqueous solutions: implications for environmental release. J Colloid Interface Sci. 2007;314(1):281–8.
Article CAS PubMed Google Scholar
Ikeda A. Water-soluble fullerenes using solubilizing agents, and their applications. J Incl Phenom Macrocyclic Chem. 2013;77(1):49–65.
Shi Q, Wang CL, Zhang H, Chen C, Zhang X, Chang X-L. Trophic transfer and biomagnification of fullerenol nanoparticles in an aquatic food chain. Environ Science: Nano. 2020;7(4):1240–51.
Lens M. Use of fullerenes in cosmetics. BIOT, 3(2):118–23.
Wang Z, Wang Z. Nanoparticles induced embryo-fetal toxicity. Toxicol Ind Health. 2020;36(3):181–213.
Article CAS PubMed Google Scholar
Adams S, Stapleton PA. Nanoparticles at the maternal-fetal interface. Mol Cell Endocrinol, 578:112067.
Hong F, Zhou Y, Zhao X, Sheng L, Wang L. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. Int J Nanomed. 2017;12:6197–204.
Teng C, Jia J, Wang Z, Sharma VK, Yan B. Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. Ecotoxicol Environ Saf. 2019;182:109439.
Article CAS PubMed Google Scholar
Ji ZQ, Sun H, Wang H, Xie Q, Liu Y, Wang Z. Biodistribution and tumor uptake of C60(OH)xin mice. J Nanopart Res. 2006;8(1):53–63.
Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett. 1996;393(1):139–45.
Burres C, Wong R, Pedreira F, Da Silva Pimenta M, Moussa F. A regulatory compliant short-term oral toxicity study of soluble [60]fullerenes in rats. EXCLI J. 2024;23:772–86.
PubMed PubMed Central Google Scholar
Sayes CM, Marchione AA, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C60 Water suspensions in rats: few differences in Fullerene toxicity in Vivo in contrast to in Vitro profiles. Nano Lett. 2007;7(8):2399–406.
Article CAS PubMed Google Scholar
Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA. Analysis of toxicity biomarkers of Fullerene C60 nanoparticles by Confocal Fluorescent Microscopy. Bull Exp Biol Med. 2015;158(4):443–9.
Article CAS PubMed Google Scholar
Kong A, Liu T, Deng S, Xu S, Luo Y, Li J, Du Z, Wang L, Xu X, Fan X. Novel antidepressant-like properties of the fullerenol in an LPS-induced depressive mouse model. Int Immunopharmacol. 2023;116:109792.
Article CAS PubMed Google Scholar
Dong R, Liu M, Huang X-X, Liu Z, Jiang D-Y, Xiao H-J, Geng J, Ren Y-H, Dai H-P. Water-Soluble C60 protects against Bleomycin-Induced Pulmonary Fibrosis in mice. Int J Nanomed. 2020;15(null):2269–76.
Lv J, He Q, Yan Z, Xie Y, Wu Y, Li A, Zhang Y, Li J, Huang Z. Inhibitory impact of prenatal exposure to Nano-Polystyrene Particles on the MAP2K6/p38 MAPK Axis Inducing Embryonic Developmental abnormalities in mice. In: Toxics 12; 2024.
Huang Z, Xu B, Huang X, Zhang Y, Yu M, Han X, Song L, Xia Y, Zhou Z, Wang X, et al. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe2O3 NP-induced embryonic development toxicity via mitochondria damage. Nanotoxicology. 2019;13(2):204–20.
Article CAS PubMed Google Scholar
Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric. 2005;8(sup1):3–63.
Article CAS PubMed Google Scholar
Sarkar MA, Vadlamuri V, Ghosh S, Glover DD. Expression and cyclic variability of CYP3A4 and CYP3A7 isoforms in human endometrium and cervix during the menstrual cycle. Drug Metab Dispos. 2003;31(1):1–6.
Article CAS PubMed Google Scholar
Zhou Y, Gu B, Brichant G, Singh JP, Yang H, Chang H, Zhao Y, Cheng C, Liu Z-W, Alderman MH, et al. The steroid hormone estriol (E3) regulates epigenetic programming of fetal mouse brain and reproductive tract. BMC Biol. 2022;20(1):93.
留言 (0)