Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch

Yuan Z, Peng M, Liu L, Peng X, Xia H. Research progress in the detection technology of chloramphenicol residues in animal derived food. Food Mach. 2024;40:219–25. https://doi.org/10.13652/j.spjx.1003.5788.2023.80522.

Article  Google Scholar 

Guidi LR, Tette PAS, Fernandes C, Silva LHM, Gloria MBA. Advances on the chromatographic determination of amphenicols in food. Talanta. 2017;162:324–38. https://doi.org/10.1016/j.talanta.2016.09.068.

Article  CAS  PubMed  Google Scholar 

Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ Chem Lett. 2022;20:1929–63. https://doi.org/10.1007/s10311-022-01416-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanekamp JC, Bast A. Antibiotics exposure and health risks: Chloramphenicol. Environ Toxicol Pharmacol. 2015;39:213–20. https://doi.org/10.1016/j.etap.2014.11.016.

Article  CAS  PubMed  Google Scholar 

Bale BI, Elebesunu EE, Manikavasagar P, Agwuna FO, Ogunkola IO, Sow AU, Lucero-Prisno DE. Antibiotic resistance in ocular bacterial infections: an integrative review of ophthalmic chloramphenicol. Trop Med Health. 2023;51:15. https://doi.org/10.1186/s41182-023-00496-x.

Article  PubMed  PubMed Central  Google Scholar 

Eliakim-Raz N, Lador A, Leibovici-Weissman Y, Elbaz M, Paul M, Leibovici L. Efficacy and safety of chloramphenicol: joining the revival of old antibiotics? Systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2015;70:979–96. https://doi.org/10.1093/jac/dku530.

Article  CAS  PubMed  Google Scholar 

Moudgil P, Bedi JS, Aulakh RS, Gill JPS, Kumar A. Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Anal Methods. 2019;12:338–46. https://doi.org/10.1007/s12161-018-1365-0.

Article  Google Scholar 

Jung HN, Park DH, Choi YJ, Kang SH, Cho HJ, Choi JM, Shim JH, Zaky AA, Abd El-Aty AM, Shin HC. Simultaneous quantification of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in animal and aquaculture products using liquid chromatography-tandem mass spectrometry. Front Nutr. 2022;8:812803. https://doi.org/10.3389/fnut.2021.812803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao S, Fu L, Yang L, Li N, Zhang X, Liu C, Wang H, Zhang Y, Guo Y, Li C. Simultaneous determination of chloramphenicol, stilbenes, and resorcylic acid lactones in pork using UPLC–MS/MS with a C18 cartridge and immunoaffinity microextraction in a packed syringe. Eur Food Res Technol. 2024;250:1083–91. https://doi.org/10.1007/s00217-023-04447-y.

Article  CAS  Google Scholar 

Zhao C, Si Y, Pan B, Taha AY, Pan T, Sun G. Design and fabrication of a highly sensitive and naked-eye distinguishable colorimetric biosensor for chloramphenicol detection by using ELISA on nanofibrous membranes. Talanta. 2020;217:121054. https://doi.org/10.1016/j.talanta.2020.121054.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu S, Wang M, Liu B, Yu F. Sensitive enzyme-linked immunosorbent assay and gold nanoparticle immunochromatocgraphic strip for rapid detecting chloramphenicol in food. J Food Saf. 2020;40:e12759. https://doi.org/10.1111/jfs.12759.

Article  Google Scholar 

Guo Y, Sang P, Lu G, Yang X, Xie Y, Hu Z, Qian H, Yao W. RNA-cleaving deoxyribozyme-linked immunosorbent assay for the ultrasensitive detection of chloramphenicol in milk. Food Chem. 2023;408:135174. https://doi.org/10.1016/j.foodchem.2022.135174.

Article  CAS  PubMed  Google Scholar 

Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22. https://doi.org/10.1038/346818a0.

Article  CAS  PubMed  Google Scholar 

Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10. https://doi.org/10.1126/science.2200121.

Article  CAS  PubMed  Google Scholar 

Wu LL, Wang YD, Xu X, Liu YL, Lin BQ, Zhang MX, Zhang JL, Wan S, Yang CY, Tan WH. Aptamer-based detection of circulating targets for precision medicine. Chem Rev. 2021;121:12035–105. https://doi.org/10.1021/acs.chemrev.0c01140.

Article  CAS  PubMed  Google Scholar 

Qian SW, Chang DR, He SS, Li YF. Aptamers from random sequence space: accomplishments, gaps and future considerations. Anal Chim Acta. 2022;1196:339511. https://doi.org/10.1016/j.aca.2022.339511.

Article  CAS  PubMed  Google Scholar 

Burke DH, Hoffman DC, Brown A, Hansen M, Pardi A, Gold L. RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. Chem Biol. 1997;4:833–43. https://doi.org/10.1016/S1074-5521(97)90116-2.

Article  CAS  PubMed  Google Scholar 

Mehta J, Van Dorst B, Rouah-Martin E, Herrebout W, Scippo M-L, Blust R, Robbens J. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J Biotechnol. 2011;155:361–9. https://doi.org/10.1016/j.jbiotec.2011.06.043.

Article  CAS  PubMed  Google Scholar 

Yadav SK, Agrawal B, Chandra P, Goyal RN. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens Bioelectron. 2014;55:337–42. https://doi.org/10.1016/j.bios.2013.12.031.

Article  CAS  PubMed  Google Scholar 

Tao X, He F, Liu X, Zhang F, Wang X, Peng Y, Liu J. Detection of chloramphenicol with an aptamer-based colorimetric assay: critical evaluation of specific and unspecific binding of analyte molecules. Microchim Acta. 2020;187:668. https://doi.org/10.1007/s00604-020-04644-6.

Article  CAS  Google Scholar 

Zhao Y, Li AZ, Liu J. Capture-SELEX for chloramphenicol binding aptamers for labeled and label-free fluorescence sensing. Environ Health. 2023;1:102–9. https://doi.org/10.1021/envhealth.3c00017.

Article  CAS  Google Scholar 

Liu D, Zeng Y, Zhou G, Lu X, Miao D, Yang Y, Zhai Y, Zhang J, Zhang Z, Wang H, Li L. Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Microchim Acta. 2019;186:287. https://doi.org/10.1007/s00604-019-3385-x.

Article  CAS  Google Scholar 

Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent advances in nucleic acid targeting probes and supramolecular constructs based on pyrene-modified oligonucleotides. Molecules. 2017;22:2108. https://doi.org/10.3390/molecules22122108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu C, Wang C, Yan L, Yang C. Pyrene excimer nucleic acid probes for biomolecule signaling. J Biomed Nanotechnol. 2009;5:495–504. https://doi.org/10.1166/jbn.2009.1074.

Article  CAS  PubMed  Google Scholar 

Wu C, Yan L, Wang C, Lin H, Wang C, Chen X, Yang CJ. A general excimer signaling approach for aptamer sensors. Biosens Bioelectron. 2010;25:2232–7. https://doi.org/10.1016/j.bios.2010.02.030.

Article  CAS  PubMed  Google Scholar 

Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci. 2005;102:17278–83. https://doi.org/10.1073/pnas.0508821102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi C, Gu H, Ma C. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon. Anal Biochem. 2010;400:99–102. https://doi.org/10.1016/j.ab.2009.12.034.

Article  CAS  PubMed  Google Scholar 

Ma C, Huang H, Zhao C. An aptamer-based and pyrene-labeled fluorescent biosensor for homogeneous detection of potassium ions. Anal Sci. 2010;26:1261–4. https://doi.org/10.2116/analsci.26.1261.

Article  CAS 

留言 (0)

沒有登入
gif