Garen A, Levinthal C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960; 38: 470–483.
Coleman JE. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct. 1992;21:441–83.
Article CAS PubMed Google Scholar
Butler-Ransohoff JE, Rokita SE, Kendall DA, Banzon JA, Carano KS, Kaiser ET, Matlin AR. Active-site mutagenesis of E. coli alkaline phosphatase: replacement of serine-102 with nonnucleophilic amino acids. J Org Chem. 1992;57:142–5.
Green MR, Sambrook J. Alkaline phosphatase. Cold Spring Harb Protoc. 2020;8: 100768. https://doi.org/10.1101/pdb.top100768.
Green MR, Sambrook J. Dephosphorylation of DNA fragments with alkaline phosphatase. Cold Spring Harb Protoc. 2020;8: 100669. https://doi.org/10.1101/pdb.prot100669.
Green MR, Sambrook J. Dephosphorylation of plasmid DNA. Cold Spring Harb Protoc. 2020; (11). https://doi.org/10.1101/pdb.prot101253.
Li-Chan E, Nakai S. Enzymic dephosphorylation of bovine casein to improve acid clotting properties and digestibility for infant formula. J Dairy Res. 1989;56(3):381–90.
Article CAS PubMed Google Scholar
Zhang N, Liu Y, Shi X, Zhang Y, Li W, Yang Y, Chen L, Yin Y, Tong L, Yang J, Luo J. Microscale thermophoresis and fluorescence polarization assays of calcineurin-peptide interactions. Anal Biochem. 2022;646: 114626.
Article CAS PubMed Google Scholar
Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100.
Ma Y, Jiang G, Wang Q, Sun Y, Zhao Y, Tong L, Luo J. Enzymatic and thermodynamic analysis of calcineurin inhibition by RCAN1. Int J Biol Macromol. 2015;72:254–60.
Article CAS PubMed Google Scholar
Chen LG, Li J, Sun L, Wang HB. Ratiometric fluorometric assay triggered by alkaline phosphatase: proof-of-concept toward a split-type biosensing strategy for DNA detection. Talanta. 2024;271: 125703. https://doi.org/10.1016/j.talanta.2024.125703.
Article CAS PubMed Google Scholar
Zhang HD, Tao BB, Wu NN, Chen LG, Wang HB. Inter filter effect between fluorescent copper nanoclusters and Cr(VI) and its application for probing the activity of alkaline phosphatase. Hongding Zhang, Bei-Bei Tao, Ning-Ning Wu, Lin-Ge Chen, Hai-Bo Wang. Microchem J. 2023; 193:109066.
Wang HB, Tao BB, Wu NN, Zhang HD, Liu YM. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity. Spectrochim Acta A: Mol Biomol Spectrosc. 2022;271: 120948. https://doi.org/10.1016/j.saa.2022.120948.
Article CAS PubMed Google Scholar
Heppel LA, Harkness DR, Hilmoe RJ. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962;237:841–6.
Article CAS PubMed Google Scholar
Dayan J, Wilson IB. The phosphorylation of tris by alkaline phosphatase. Biochim Biophys Acta. 1964;81:620–3.
de La Fournière L, Nosjean O, Buchet R, Roux B. Thermal and pH stabilities of alkaline phosphatase from bovine intestinal mucosa: a FTIR study. Biochim Biophys Acta. 1995;1248(2):186–92.
Lorient D, Linden G. Dephosphorylation of bovine casein by milk alkaline phosphatase. J Dairy Res. 1976;43(1):19–26. https://doi.org/10.1017/s0022029900015557.
Article CAS PubMed Google Scholar
Arima S, Niki R, Takase K. Structure of beta-casein. J Dairy Res. 1979;46(2):281–2. https://doi.org/10.1017/s0022029900017180.
Article CAS PubMed Google Scholar
Yeung AC, Glahn RP, Miller DD. Dephosphorylation of sodium caseinate, enzymatically hydrolyzed casein and casein phosphopeptides by intestinal alkaline phosphatase: implications for iron availability. J Nutr Biochem. 2001;12(5):292–9.
Article CAS PubMed Google Scholar
Chen X, Fan R, Wang Y, Munir M, Li C, Wang C, Hou Z, Zhang G, Liu L, He J. Bovine milk beta-casein: structure, properties, isolation, and targeted application of isolated products. Compr Rev Food Sci Food Saf. 2024;23(2): e13311. https://doi.org/10.1111/1541-4337.13311.
Article CAS PubMed Google Scholar
Li W, Bi L, Wang W, Li Y, Zhou Y, Wei H, Jiang T, Bai L, Chen Y, Zhang Z, Yuan X, Xiao J, Zhang XE. Development of a universal phosphorylated peptide-binding protein for simultaneous assay of kinases. Biosens Bioelectron. 2009;24(9):2871–7.
Article CAS PubMed Google Scholar
Chaidaroglou A, Brezinski DJ, Middleton SA, Kantrowitz ER. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase. Biochemistry. 1988;27(22):8338–43.
Article CAS PubMed Google Scholar
Stec B, Hehir MJ, Brennan C, Nolte M, Kantrowitz ESR. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. J Mol Biol. 1998; 277(3):647–662.
Wang L, Cheng N, Wang P, Li J, Jia A, Li W, Zhang N, Yin Y, Tong L, Wei Q, Liu G, Li Z, Luo J. A novel peptide exerts potent immunosuppression by blocking the two-site interaction of NFAT with calcineurin. J Biol Chem. 2020;295(9):2760–70.
Article CAS PubMed PubMed Central Google Scholar
Kim EE, Wyckoff HW. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis J Mol Biol. 1991;218(2):449–64.
Holtz KM, Kantrowitz ER. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett. 1999;462(1–2):7–11.
Article CAS PubMed Google Scholar
Dumitrașcu L, Stănciuc N, Aprodu I, Ciuciu AM, Alexe P, Bahrim GE. Monitoring the heat-induced structural changes of alkaline phosphatase by molecular modeling, fluorescence spectroscopy and inactivation kinetics investigations. J Food Sci Technol. 2015;52(10):6290–300.
Article PubMed PubMed Central Google Scholar
Weissig H, Schildge A, Hoylaerts MF, Iqbal M, Millán JL. Cloning and expression of the bovine intestinal alkaline phosphatase gene: biochemical characterization of the recombinant enzyme. Biochem J. 1993;290:503–8. https://doi.org/10.1042/bj2900503.
Article CAS PubMed PubMed Central Google Scholar
Manes T, Hoylaerts MF, Müller R, Lottspeich F, Hölke W, Millán JL. Genetic complexity, structure, and characterization of highly active bovine intestinal alkaline phosphatases. J Biol Chem. 1998;273(36):23353–60. https://doi.org/10.1074/jbc.273.36.23353.
留言 (0)