Cohuet G, Struijker-Boudier H. Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther. 2006;111:81–98. https://doi.org/10.1016/j.pharmthera.2005.09.002
Article CAS PubMed Google Scholar
Guideline for the pharmacological treatment of hypertension in adults. Geneva: World Health Organization; 2021.
Kanbay M, Copur S, Tanriover C, Ucku D, Laffin L. Future treatments in hypertension: Can we meet the unmet needs of patients? Eur J Intern Med. 2023;115:18–28. https://doi.org/10.1016/j.ejim.2023.06.008
Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52:375–414. https://doi.org/10.1016/S0031-6997(24)01457-1
Article CAS PubMed Google Scholar
Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34:665–73. https://doi.org/10.1038/hr.2011.39
Article CAS PubMed Google Scholar
MacAllister R, Vallance P. Nitric oxide in essential and renal hypertension. J Am Soc Nephrol. 1994;5:1057–65. https://doi.org/10.1681/ASN.V541057
Article CAS PubMed Google Scholar
Toda N, Arakawa K. Salt-induced hemodynamic regulation mediated by nitric oxide. J Hypertens. 2011;29:415–24. https://doi.org/10.1097/HJH.0b013e328341d19e
Article CAS PubMed Google Scholar
Rajapakse NW, Head GA, Kaye DM. Say NO to Obesity-Related Hypertension: Role of the L-Arginine-Nitric Oxide Pathway. Hypertension. 2016;67:813–9. https://doi.org/10.1161/HYPERTENSIONAHA.116.06778
Article CAS PubMed Google Scholar
Rajapakse NW, Giam B, Kuruppu S, Head GA, Kaye DM. Impaired l-arginine-nitric oxide pathway contributes to the pathogenesis of resistant hypertension. Clin Sci (Lond). 2019;133:2061–7. https://doi.org/10.1042/CS20190851
Article CAS PubMed Google Scholar
Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov. 2015;14:623–41. https://doi.org/10.1038/nrd4623
Article CAS PubMed Google Scholar
Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68. https://doi.org/10.1038/nrd2038
Article CAS PubMed PubMed Central Google Scholar
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol. 2022;145:107023. https://doi.org/10.1016/j.vph.2022.107023
Article CAS PubMed Google Scholar
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2021;264:355–94. https://doi.org/10.1007/164_2018_197
Article CAS PubMed Google Scholar
Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, et al. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol. 2024;81:4130–51. https://doi.org/10.1111/bph.15698.
Article CAS PubMed Google Scholar
Joshi CN, Martin DN, Fox JC, Mendelev NN, Brown TA, Tulis DA. The Soluble Guanylate Cyclase Stimulator BAY 41-2272 Inhibits Vascular Smooth Muscle Growth through the cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase Pathways. J Pharmacol Exp Ther. 2011;339:394–402. https://doi.org/10.1124/jpet.111.183400
Article CAS PubMed PubMed Central Google Scholar
Holt AW, Martin DN, Shaver PR, Adderley SP, Stone JD, Joshi CN, et al. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-Serine 239 phosphorylation. Cell Signal. 2016;28:1364–79. https://doi.org/10.1016/j.cellsig.2016.06.012
Article CAS PubMed PubMed Central Google Scholar
Hung YC, Liu YC, Wu BN, Yeh JL, Hsu JH. Cinaciguat Prevents Postnatal Closure of Ductus Arteriosus by Vasodilation and Anti-remodeling in Neonatal Rats. Front Physiol. 2021;12:661171. https://doi.org/10.3389/fphys.2021.661171
Article PubMed PubMed Central Google Scholar
Jama HA, Muralitharan RR, Xu C, O’Donnell JA, Bertagnolli M, Broughton BRS, et al. Rodent models of hypertension. Br J Pharmacol. 2022;179:918–37. https://doi.org/10.1111/bph.15650
Article CAS PubMed Google Scholar
Mülsch A, Bauersachs J, Schäfer A, Stasch JP, Kast R, Busse R. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br J Pharmacol. 1997;120:681–9. https://doi.org/10.1038/sj.bjp.0700982
Article PubMed PubMed Central Google Scholar
Ruetten H, Zabel U, Linz W, Schmidt HH. Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats. Circ Res. 1999;85:534–41. https://doi.org/10.1161/01.res.85.6.534
Article CAS PubMed Google Scholar
Ndisang JF, Wu L, Zhao W, Wang R. Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood. 2003;101:3893–900. https://doi.org/10.1182/blood-2002-08-2608
Article CAS PubMed Google Scholar
Priviero FB, Zemse SM, Teixeira CE, Webb RC. Oxidative stress impairs vasorelaxation induced by the soluble guanylyl cyclase activator BAY 41-2272 in spontaneously hypertensive rats. Am J Hypertens. 2009;22:493–9. https://doi.org/10.1038/ajh.2009.18
Article CAS PubMed Google Scholar
Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, et al. NO-independent regulatory site on soluble guanylate cyclase. Nature. 2001;410:212–5. https://doi.org/10.1038/35065611
Article CAS PubMed Google Scholar
Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies. Br J Pharmacol. 2002;135:344–55. https://doi.org/10.1038/sj.bjp.0704483
Article CAS PubMed PubMed Central Google Scholar
Brockunier L, Stelmach J, Guo J, Spencer T, Rosauer K, Bansal A, et al. Soluble guanylate cyclase stimulators for the treatment of hypertension: Discovery of MK-2947. Bioorg Med Chem Lett. 2020;30:127574. https://doi.org/10.1016/j.bmcl.2020.127574
Article CAS PubMed Google Scholar
Wunder F, Stasch JP, Knorr A, Mondritzki T, Brockschnieder D, Becker-Pelster EM, et al. Identification and characterization of the new generation sGC stimulator BAY-747 designed for the treatment of resistant hypertension. Br J Pharmacol. 2023;180:2500–13. https://doi.org/10.1111/bph.16142
Article CAS PubMed Google Scholar
Zimmer DP, Shea CM, Tobin JV, Tchernychev B, Germano P, Sykes K, et al. Olinciguat, an Oral sGC Stimulator, Exhibits Diverse Pharmacology Across Preclinical Models of Cardiovascular, Metabolic, Renal, and Inflammatory Disease. Front Pharmacol. 2020;11:419. https://doi.org/10.3389/fphar.2020.00419
Article CAS PubMed PubMed Central Google Scholar
Tobin JV, Zimmer DP, Shea C, Germano P, Bernier SG, Liu G, et al. Pharmacological Characterization of IW-1973, a Novel Soluble Guanylate Cyclase Stimulator with Extensive Tissue Distribution, Antihypertensive, Anti-Inflammatory, and Antifibrotic Effects in Preclinical Models of Disease. J Pharmacol Exp Ther. 2018;365:664–75. https://doi.org/10.1124/jpet.117.247429
留言 (0)