Soluble guanylate cyclase stimulators and activators as potential antihypertensive drugs

Cohuet G, Struijker-Boudier H. Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther. 2006;111:81–98. https://doi.org/10.1016/j.pharmthera.2005.09.002

Article  CAS  PubMed  Google Scholar 

Guideline for the pharmacological treatment of hypertension in adults. Geneva: World Health Organization; 2021.

Kanbay M, Copur S, Tanriover C, Ucku D, Laffin L. Future treatments in hypertension: Can we meet the unmet needs of patients? Eur J Intern Med. 2023;115:18–28. https://doi.org/10.1016/j.ejim.2023.06.008

Article  PubMed  Google Scholar 

Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52:375–414. https://doi.org/10.1016/S0031-6997(24)01457-1

Article  CAS  PubMed  Google Scholar 

Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34:665–73. https://doi.org/10.1038/hr.2011.39

Article  CAS  PubMed  Google Scholar 

MacAllister R, Vallance P. Nitric oxide in essential and renal hypertension. J Am Soc Nephrol. 1994;5:1057–65. https://doi.org/10.1681/ASN.V541057

Article  CAS  PubMed  Google Scholar 

Toda N, Arakawa K. Salt-induced hemodynamic regulation mediated by nitric oxide. J Hypertens. 2011;29:415–24. https://doi.org/10.1097/HJH.0b013e328341d19e

Article  CAS  PubMed  Google Scholar 

Rajapakse NW, Head GA, Kaye DM. Say NO to Obesity-Related Hypertension: Role of the L-Arginine-Nitric Oxide Pathway. Hypertension. 2016;67:813–9. https://doi.org/10.1161/HYPERTENSIONAHA.116.06778

Article  CAS  PubMed  Google Scholar 

Rajapakse NW, Giam B, Kuruppu S, Head GA, Kaye DM. Impaired l-arginine-nitric oxide pathway contributes to the pathogenesis of resistant hypertension. Clin Sci (Lond). 2019;133:2061–7. https://doi.org/10.1042/CS20190851

Article  CAS  PubMed  Google Scholar 

Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov. 2015;14:623–41. https://doi.org/10.1038/nrd4623

Article  CAS  PubMed  Google Scholar 

Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68. https://doi.org/10.1038/nrd2038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol. 2022;145:107023. https://doi.org/10.1016/j.vph.2022.107023

Article  CAS  PubMed  Google Scholar 

Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2021;264:355–94. https://doi.org/10.1007/164_2018_197

Article  CAS  PubMed  Google Scholar 

Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, et al. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol. 2024;81:4130–51. https://doi.org/10.1111/bph.15698.

Article  CAS  PubMed  Google Scholar 

Joshi CN, Martin DN, Fox JC, Mendelev NN, Brown TA, Tulis DA. The Soluble Guanylate Cyclase Stimulator BAY 41-2272 Inhibits Vascular Smooth Muscle Growth through the cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase Pathways. J Pharmacol Exp Ther. 2011;339:394–402. https://doi.org/10.1124/jpet.111.183400

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holt AW, Martin DN, Shaver PR, Adderley SP, Stone JD, Joshi CN, et al. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-Serine 239 phosphorylation. Cell Signal. 2016;28:1364–79. https://doi.org/10.1016/j.cellsig.2016.06.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hung YC, Liu YC, Wu BN, Yeh JL, Hsu JH. Cinaciguat Prevents Postnatal Closure of Ductus Arteriosus by Vasodilation and Anti-remodeling in Neonatal Rats. Front Physiol. 2021;12:661171. https://doi.org/10.3389/fphys.2021.661171

Article  PubMed  PubMed Central  Google Scholar 

Jama HA, Muralitharan RR, Xu C, O’Donnell JA, Bertagnolli M, Broughton BRS, et al. Rodent models of hypertension. Br J Pharmacol. 2022;179:918–37. https://doi.org/10.1111/bph.15650

Article  CAS  PubMed  Google Scholar 

Mülsch A, Bauersachs J, Schäfer A, Stasch JP, Kast R, Busse R. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br J Pharmacol. 1997;120:681–9. https://doi.org/10.1038/sj.bjp.0700982

Article  PubMed  PubMed Central  Google Scholar 

Ruetten H, Zabel U, Linz W, Schmidt HH. Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats. Circ Res. 1999;85:534–41. https://doi.org/10.1161/01.res.85.6.534

Article  CAS  PubMed  Google Scholar 

Ndisang JF, Wu L, Zhao W, Wang R. Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood. 2003;101:3893–900. https://doi.org/10.1182/blood-2002-08-2608

Article  CAS  PubMed  Google Scholar 

Priviero FB, Zemse SM, Teixeira CE, Webb RC. Oxidative stress impairs vasorelaxation induced by the soluble guanylyl cyclase activator BAY 41-2272 in spontaneously hypertensive rats. Am J Hypertens. 2009;22:493–9. https://doi.org/10.1038/ajh.2009.18

Article  CAS  PubMed  Google Scholar 

Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, et al. NO-independent regulatory site on soluble guanylate cyclase. Nature. 2001;410:212–5. https://doi.org/10.1038/35065611

Article  CAS  PubMed  Google Scholar 

Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies. Br J Pharmacol. 2002;135:344–55. https://doi.org/10.1038/sj.bjp.0704483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brockunier L, Stelmach J, Guo J, Spencer T, Rosauer K, Bansal A, et al. Soluble guanylate cyclase stimulators for the treatment of hypertension: Discovery of MK-2947. Bioorg Med Chem Lett. 2020;30:127574. https://doi.org/10.1016/j.bmcl.2020.127574

Article  CAS  PubMed  Google Scholar 

Wunder F, Stasch JP, Knorr A, Mondritzki T, Brockschnieder D, Becker-Pelster EM, et al. Identification and characterization of the new generation sGC stimulator BAY-747 designed for the treatment of resistant hypertension. Br J Pharmacol. 2023;180:2500–13. https://doi.org/10.1111/bph.16142

Article  CAS  PubMed  Google Scholar 

Zimmer DP, Shea CM, Tobin JV, Tchernychev B, Germano P, Sykes K, et al. Olinciguat, an Oral sGC Stimulator, Exhibits Diverse Pharmacology Across Preclinical Models of Cardiovascular, Metabolic, Renal, and Inflammatory Disease. Front Pharmacol. 2020;11:419. https://doi.org/10.3389/fphar.2020.00419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tobin JV, Zimmer DP, Shea C, Germano P, Bernier SG, Liu G, et al. Pharmacological Characterization of IW-1973, a Novel Soluble Guanylate Cyclase Stimulator with Extensive Tissue Distribution, Antihypertensive, Anti-Inflammatory, and Antifibrotic Effects in Preclinical Models of Disease. J Pharmacol Exp Ther. 2018;365:664–75. https://doi.org/10.1124/jpet.117.247429

Article  CAS  PubMed 

留言 (0)

沒有登入
gif