Bouhairie VE, McGill JB. Diabetic kidney disease. Mo Med. 2016;113:390–4.
PubMed PubMed Central Google Scholar
Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018.
Article PubMed PubMed Central Google Scholar
Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–39.
Article PubMed PubMed Central Google Scholar
Anders HJ, Huber TB, Isermann B, Schiffer M. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018;14:361–77.
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293–300.
Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.
Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93.
Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.
Tsuboi N, Sasaki T, Okabayashi Y, Haruhara K, Kanzaki G, Yokoo T. Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res. 2021;44:605–17.
Oba R, Kanzaki G, Sasaki T, Okabayashi Y, Haruhara K, Koike K, et al. Dietary protein intake and single-nephron glomerular filtration rate. Nutrients. 2020;12:2549.
Article PubMed PubMed Central Google Scholar
Denic A, Mathew J, Lerman LO, Lieske JC, Larson JJ, Alexander MP, et al. Single-nephron glomerular filtration rate in healthy adults. N Engl J Med. 2017;376:2349–57.
Article PubMed PubMed Central Google Scholar
Sasaki T, Tsuboi N, Okabayashi Y, Haruhara K, Kanzaki G, Koike K, et al. Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology. Sci Rep. 2019;9:14400.
Article PubMed PubMed Central Google Scholar
Okabayashi Y, Tsuboi N, Sasaki T, Haruhara K, Kanzaki G, Koike K, et al. Single-nephron GFR in patients with obesity-related glomerulopathy. Kidney Int Rep. 2020;5:1218–27.
Article PubMed PubMed Central Google Scholar
Marumoto H, Tsuboi N, D’Agati VD, Sasaki T, Okabayashi Y, Haruhara K, et al. Total nephron number and single-nephron parameters in patients with IgA nephropathy. Kidney360. 2021;2:828–41.
Article PubMed PubMed Central Google Scholar
Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: Mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 2017;18:771–83.
Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1358–73.
Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60.
Article PubMed PubMed Central Google Scholar
Coste B, Delmas P. Piezo ion channels in cardiovascular functions and diseases. Circ Res. 2024;134:572–91.
Nagase T, Nagase M. Piezo ion channels: Long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res. 2024;47:2786–99.
Mochida Y, Ochiai K, Nagase T, Nonomura K, Akimoto Y, Fukuhara H, et al. Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells. Sci Rep. 2022;12:4197.
Article PubMed PubMed Central Google Scholar
Ochiai K, Mochida Y, Nagase T, Fukuhara H, Yamaguchi Y, Nagase M. Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone. Hypertens Res. 2023;46:1234–46.
Yamazaki T, Tanimoto M, Gohda T, Ohara I, Hagiwara S, Murakoshi M, et al. Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK-Ay/Ta mice. Nephron Exp Nephrol. 2009;113:e66–76.
Kondo M, Tahara A, Hayashi K, Inami H, Ishikawa T, Tomura Y. Therapeutic effects of interleukin-1 receptor-associated kinase 4 inhibitor as2444697 on diabetic nephropathy in type 2 diabetic mice. Naunyn Schmiedebergs Arch Pharm. 2020;393:1197–209.
Yasuda I, Hasegawa K, Sakamaki Y, Muraoka H, Kawaguchi T, Kusahana E, et al. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. J Am Soc Nephrol. 2021;32:1355–70.
Article PubMed PubMed Central Google Scholar
Haruhara K, Suzuki T, Wakui H, Azushima K, Kurotaki D, Kawase W, et al. Deficiency of the kidney tubular angiotensin II type1 receptor-associated protein ATRAP exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int. 2022;101:912–28.
Oda K, Miyamoto S, Kodera R, Wada J, Shikata K. Suramin prevents the development of diabetic kidney disease by inhibiting NLRP3 inflammasome activation in KK-Ay mice. J Diabetes Investig. 2023;14:205–20.
Hagiwara S, Makita Y, Gu L, Tanimoto M, Zhang M, Nakamura S, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation. Nephrol Dial Transpl. 2006;21:605–15.
Glastras SJ, Chen H, Teh R, McGrath RT, Chen J, Pollock CA, et al. Mouse models of diabetes, obesity and related kidney disease. PLoS ONE. 2016;11:e0162131.
Article PubMed PubMed Central Google Scholar
Teuma L, Eshwaran R, Tawokam Fongang U, Wieland J, Shao F, Lagana ML, et al. Glucosamine inhibits extracellular matrix accumulation in experimental diabetic nephropathy. Front Nutr. 2022;9:1048305.
Article PubMed PubMed Central Google Scholar
Li Z, Murakoshi M, Ichikawa S, Koshida T, Adachi E, Suzuki C, et al. The sodium-glucose cotransporter 2 inhibitor tofogliflozin prevents diabetic kidney disease progression in type 2 diabetic mice. FEBS Open Bio. 2020;10:2761–70.
Article PubMed PubMed Central Google Scholar
Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Ren Physiol. 2014;306:F1335–47.
Rangan GK, Tesch GH. Quantification of renal pathology by image analysis. Nephrology. 2007;12:553–8.
Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 2013;296:378–81.
Oishi A, Dam J, Jockers R. Β-arrestin-2 bret biosensors detect different β-arrestin-2 conformations in interaction with GPCRs. ACS Sens. 2020;5:57–64.
Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P, et al. Piezo1 ion channel pore properties are dictated by c-terminal region. Nat Commun. 2015;6:7223.
留言 (0)