Upregulation of Piezo2 and increased extracellular matrix protein in diabetic kidney disease mice

Bouhairie VE, McGill JB. Diabetic kidney disease. Mo Med. 2016;113:390–4.

PubMed  PubMed Central  Google Scholar 

Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018.

Article  PubMed  PubMed Central  Google Scholar 

Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–39.

Article  PubMed  PubMed Central  Google Scholar 

Anders HJ, Huber TB, Isermann B, Schiffer M. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018;14:361–77.

Article  PubMed  Google Scholar 

Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293–300.

Article  PubMed  Google Scholar 

Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

Article  PubMed  Google Scholar 

Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93.

PubMed  Google Scholar 

Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

Article  PubMed  Google Scholar 

Tsuboi N, Sasaki T, Okabayashi Y, Haruhara K, Kanzaki G, Yokoo T. Assessment of nephron number and single-nephron glomerular filtration rate in a clinical setting. Hypertens Res. 2021;44:605–17.

Article  PubMed  Google Scholar 

Oba R, Kanzaki G, Sasaki T, Okabayashi Y, Haruhara K, Koike K, et al. Dietary protein intake and single-nephron glomerular filtration rate. Nutrients. 2020;12:2549.

Article  PubMed  PubMed Central  Google Scholar 

Denic A, Mathew J, Lerman LO, Lieske JC, Larson JJ, Alexander MP, et al. Single-nephron glomerular filtration rate in healthy adults. N Engl J Med. 2017;376:2349–57.

Article  PubMed  PubMed Central  Google Scholar 

Sasaki T, Tsuboi N, Okabayashi Y, Haruhara K, Kanzaki G, Koike K, et al. Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology. Sci Rep. 2019;9:14400.

Article  PubMed  PubMed Central  Google Scholar 

Okabayashi Y, Tsuboi N, Sasaki T, Haruhara K, Kanzaki G, Koike K, et al. Single-nephron GFR in patients with obesity-related glomerulopathy. Kidney Int Rep. 2020;5:1218–27.

Article  PubMed  PubMed Central  Google Scholar 

Marumoto H, Tsuboi N, D’Agati VD, Sasaki T, Okabayashi Y, Haruhara K, et al. Total nephron number and single-nephron parameters in patients with IgA nephropathy. Kidney360. 2021;2:828–41.

Article  PubMed  PubMed Central  Google Scholar 

Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: Mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 2017;18:771–83.

Article  PubMed  Google Scholar 

Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1358–73.

Article  PubMed  Google Scholar 

Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60.

Article  PubMed  PubMed Central  Google Scholar 

Coste B, Delmas P. Piezo ion channels in cardiovascular functions and diseases. Circ Res. 2024;134:572–91.

Article  PubMed  Google Scholar 

Nagase T, Nagase M. Piezo ion channels: Long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res. 2024;47:2786–99.

Article  PubMed  Google Scholar 

Mochida Y, Ochiai K, Nagase T, Nonomura K, Akimoto Y, Fukuhara H, et al. Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells. Sci Rep. 2022;12:4197.

Article  PubMed  PubMed Central  Google Scholar 

Ochiai K, Mochida Y, Nagase T, Fukuhara H, Yamaguchi Y, Nagase M. Upregulation of Piezo2 in the mesangial, renin, and perivascular mesenchymal cells of the kidney of Dahl salt-sensitive hypertensive rats and its reversal by esaxerenone. Hypertens Res. 2023;46:1234–46.

Article  PubMed  Google Scholar 

Yamazaki T, Tanimoto M, Gohda T, Ohara I, Hagiwara S, Murakoshi M, et al. Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK-Ay/Ta mice. Nephron Exp Nephrol. 2009;113:e66–76.

Article  PubMed  Google Scholar 

Kondo M, Tahara A, Hayashi K, Inami H, Ishikawa T, Tomura Y. Therapeutic effects of interleukin-1 receptor-associated kinase 4 inhibitor as2444697 on diabetic nephropathy in type 2 diabetic mice. Naunyn Schmiedebergs Arch Pharm. 2020;393:1197–209.

Article  Google Scholar 

Yasuda I, Hasegawa K, Sakamaki Y, Muraoka H, Kawaguchi T, Kusahana E, et al. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. J Am Soc Nephrol. 2021;32:1355–70.

Article  PubMed  PubMed Central  Google Scholar 

Haruhara K, Suzuki T, Wakui H, Azushima K, Kurotaki D, Kawase W, et al. Deficiency of the kidney tubular angiotensin II type1 receptor-associated protein ATRAP exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int. 2022;101:912–28.

Article  PubMed  Google Scholar 

Oda K, Miyamoto S, Kodera R, Wada J, Shikata K. Suramin prevents the development of diabetic kidney disease by inhibiting NLRP3 inflammasome activation in KK-Ay mice. J Diabetes Investig. 2023;14:205–20.

Article  PubMed  Google Scholar 

Hagiwara S, Makita Y, Gu L, Tanimoto M, Zhang M, Nakamura S, et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation. Nephrol Dial Transpl. 2006;21:605–15.

Article  Google Scholar 

Glastras SJ, Chen H, Teh R, McGrath RT, Chen J, Pollock CA, et al. Mouse models of diabetes, obesity and related kidney disease. PLoS ONE. 2016;11:e0162131.

Article  PubMed  PubMed Central  Google Scholar 

Teuma L, Eshwaran R, Tawokam Fongang U, Wieland J, Shao F, Lagana ML, et al. Glucosamine inhibits extracellular matrix accumulation in experimental diabetic nephropathy. Front Nutr. 2022;9:1048305.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Murakoshi M, Ichikawa S, Koshida T, Adachi E, Suzuki C, et al. The sodium-glucose cotransporter 2 inhibitor tofogliflozin prevents diabetic kidney disease progression in type 2 diabetic mice. FEBS Open Bio. 2020;10:2761–70.

Article  PubMed  PubMed Central  Google Scholar 

Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Ren Physiol. 2014;306:F1335–47.

Article  Google Scholar 

Rangan GK, Tesch GH. Quantification of renal pathology by image analysis. Nephrology. 2007;12:553–8.

Article  PubMed  Google Scholar 

Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 2013;296:378–81.

Article  Google Scholar 

Oishi A, Dam J, Jockers R. Β-arrestin-2 bret biosensors detect different β-arrestin-2 conformations in interaction with GPCRs. ACS Sens. 2020;5:57–64.

Article  PubMed  Google Scholar 

Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P, et al. Piezo1 ion channel pore properties are dictated by c-terminal region. Nat Commun. 2015;6:7223.

Article 

留言 (0)

沒有登入
gif