Gammill HS, Nelson JL (2010) Naturally acquired microchimerism. Int J Dev Biol 54:531–543. https://doi.org/10.1387/ijdb.082767hg
Article PubMed PubMed Central Google Scholar
Seppanen E, Fisk NM, Khosrotehrani K (2013) Pregnancy-acquired fetal progenitor cells. J Reprod Immunol 97:27–35. https://doi.org/10.1016/J.JRI.2012.08.004
Article CAS PubMed Google Scholar
Cómitre-Mariano B, Martínez-García M, García-Gálvez B, Paternina-Die M, Desco M, Carmona S, Gómez-Gaviro MV (2021) Feto-maternal microchimerism: Memories from pregnancy. iScience 25:103664. https://doi.org/10.1016/J.ISCI.2021.103664
Article PubMed PubMed Central Google Scholar
Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, Vilimszky Z, Kolics F, Gopcsa L, Reményi P, Tordai A (2019) Current trends in Applications of Circulatory Microchimerism detection in transplantation. Int J Mol Sci 20:4450. https://doi.org/10.3390/IJMS20184450
Article CAS PubMed PubMed Central Google Scholar
Müller AC, Jakobsen MA, Barington T, Vaag AA, Grunnet LG, Olsen SF, Kamper-Jørgensen M (2015) Microchimerism of male origin in a cohort of Danish girls. Chimerism 6:65–71. https://doi.org/10.1080/19381956.2016.1218583
Stevens AM, Hermes HM, Lambert NC, Nelson JL, Meroni PL, Cimaz R (2005) Maternal and sibling microchimerism in twins and triplets discordant for neonatal lupus syndrome-congenital heart block. Rheumatology (Oxford) 44:187–191. https://doi.org/10.1093/RHEUMATOLOGY/KEH453
Article CAS PubMed Google Scholar
Karlmark KR, Haddad M, El, Donato XC, Martin GV, Bretelle F, Lesavre N, Cocallemen JF, Martin M, Picard C, Albentosa T, Roudier J, Desbriere R, Lambert NC (2021) Grandmaternal cells in cord blood. EBioMedicine 74:103721. https://doi.org/10.1016/J.EBIOM.2021.103721
Article PubMed PubMed Central Google Scholar
Bianchi DW, Khosrotehrani K, Way SS, MacKenzie TC, Bajema I, O’Donoghue K (2021) Forever connected: the lifelong Biological consequences of Fetomaternal and Maternofetal Microchimerism. Clin Chem 67:351–362. https://doi.org/10.1093/CLINCHEM/HVAA304
Article PubMed PubMed Central Google Scholar
Sedov E, McCarthy J, Koren E, Fuchs Y (2022) Fetomaternal microchimerism in tissue repair and tumor development. Dev Cell 57:1442–1452. https://doi.org/10.1016/J.DEVCEL.2022.05.018
Article CAS PubMed Google Scholar
Chen C-P, Lee M-Y, Huang J-P, Aplin JD, Wu Y-H, Hu C-S, Chen P-C, Li H, Hwang S-M, Liu S-H, Yang Y-C (2008) Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins. Stem Cells 26:550–561. https://doi.org/10.1634/STEMCELLS.2007-0406
Article CAS PubMed Google Scholar
Castela M, Nassar D, Sbeih M, Jachiet M, Wang Z, Aractingi S (2017) Ccl2/Ccr2 signalling recruits a distinct fetal microchimeric population that rescues delayed maternal wound healing. Nat Commun 8:15463. https://doi.org/10.1038/NCOMMS15463
Article CAS PubMed PubMed Central Google Scholar
Sbeih M, Oulès B, Alkobtawi M, Schwendimann L, Ngô QT, Fontaine R, Teissier N, Gressens P, Aractingi S (2022) CCL2 recruits fetal microchimeric cells and dampens maternal brain damage in post-partum mice. Neurobiol Dis 174:105892. https://doi.org/10.1016/J.NBD.2022.105892
Article CAS PubMed Google Scholar
Fujimoto K, Nakajima A, Hori S, Irie N (2021) Whole embryonic detection of maternal microchimeric cells highlights significant differences in their numbers among individuals. PLoS ONE 16:e0261357. https://doi.org/10.1371/JOURNAL.PONE.0261357
Article CAS PubMed PubMed Central Google Scholar
Jonsson AM, Uzunel M, Götherström C, Papadogiannakis N, Westgren M (2008) Maternal microchimerism in human fetal tissues. Am J Obstet Gynecol 198. https://doi.org/10.1016/j.ajog.2007.09.047.:325.e1-325.e6
Vernochet C, Caucheteux SM, Kanellopoulos-Langevin C (2007) Bi-directional cell trafficking between Mother and Fetus in Mouse Placenta. Placenta 28:639–649. https://doi.org/10.1016/J.PLACENTA.2006.10.006
Article CAS PubMed Google Scholar
Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, Sant’Angelo D, Laouar Y, Laouar A (2016) Transfer of maternal Immune cells by Breastfeeding: maternal cytotoxic T lymphocytes present in breast milk localize in the Peyer’s patches of the Nursed Infant. PLoS ONE 11:e0156762. https://doi.org/10.1371/JOURNAL.PONE.0156762
Article PubMed PubMed Central Google Scholar
Ward EJ, Bert S, Fanti S, Malone KM, Maughan RT, Gkantsinikoudi C, Prin F, Volpato LK, Piovezan AP, Graham GJ, Dufton NP, Perretti M, Marelli-Berg FM, Nadkarni S (2023) Placental inflammation leads to abnormal embryonic Heart Development. Circulation 147:956–972. https://doi.org/10.1161/CIRCULATIONAHA.122.061934
Article CAS PubMed Google Scholar
Han VX, Patel S, Jones HF, Dale RC (2021) Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 17:564–579. https://doi.org/10.1038/S41582-021-00530-8
Wegorzewska M, Le T, Tang Q, Mackenzie TC (2014) Increased maternal T cell microchimerism in the allogeneic fetus during LPS-induced preterm labor in mice. Chimerism 5:68–74. https://doi.org/10.1080/19381956.2014.1002703
Lei J, Xie L, Zhao H, Gard C, Clemens JL, McLane MW, Feller MC, Ozen M, Novak C, Alshehri W, Alhejaily N, Shabi Y, Rosenzweig JM, Facciabene A, Burd I (2018) Maternal CD8 + T-cell depletion alleviates intrauterine inflammation-induced perinatal brain injury. Am J Reprod Immunol 79:e12798. https://doi.org/10.1111/AJI.12798
Romero R, Kim YM, Pacora P, Kim CJ, Benshalom-Tirosh N, Jaiman S, Bhatti G, Kim JS, Qureshi F, Jacques SM, Jung EJ, Yeo L, Panaitescu B, Maymon E, Hassan SS, Hsu CD, Erez O (2018) The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med 46:613–630. https://doi.org/10.1515/JPM-2018-0055
Article PubMed PubMed Central Google Scholar
Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN (2016) Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 22:535–560. https://doi.org/10.1093/HUMUPD/DMW022
Article CAS PubMed PubMed Central Google Scholar
Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A (2015) Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays 37:1106–1118. https://doi.org/10.1002/BIES.201500059
Article PubMed PubMed Central Google Scholar
Abrams ET, Miller EM (2011) The roles of the immune system in women’s reproduction: evolutionary constraints and life history trade-offs. Am J Phys Anthropol 146 Suppl 53:134–154. https://doi.org/10.1002/AJPA.21621
Grindstaff JL, Brodie ED 3rd, Ketterson ED (2003) Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc Biol Sci 270:2309–2319. https://doi.org/10.1098/RSPB.2003.2485
Article PubMed PubMed Central Google Scholar
Koh JY, Lee SB, Kim B, Park Y, Choi JR, Son S, Kim YJ, Hahn SM, Ahn JG, Kang JM, Shin EC (2021) Impact of maternal engrafted cytomegalovirus-specific CD8 + T cells in a patient with severe combined immunodeficiency. Clin Transl Immunol 10:e1272. https://doi.org/10.1002/CTI2.1272
Yüzen D, Urbschat C, Schepanski S, Thiele K, Arck PC, Mittrücker H (2023) Pregnancy-induced transfer of pathogen‐specific T cells from mother to fetus in mice. EMBO Rep 24:e56829. https://doi.org/10.15252/EMBR.202356829/SUPPL_FILE/EMBR202356829-SUP-0002-FIGEV3.ZIP
Article PubMed PubMed Central Google Scholar
Hassiotou F, Hepworth AR, Metzger P, Tat Lai C, Trengove N, Hartmann PE, Filgueira L (2013) Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin Transl Immunol 2:e3. https://doi.org/10.1038/CTI.2013.1
留言 (0)