Hydrophobic Deep Eutectic Solvent Based Dispersive Liquid–Liquid Microextraction for a Green and Efficient Triclosan Determination: Critical Study of Extraction Variables

Florindo C, Branco LC, Marrucho IM. Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents. Chem Sus Chem. 2019;12:1549–59.

Article  CAS  Google Scholar 

Sajid M. Magnetic ionic liquids in analytical sample preparation: a literature review. TrAC Trends Anal Chem. 2019;113:210–23.

Article  CAS  Google Scholar 

Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 2012;121:1232–85.

Article  Google Scholar 

Shen L, Jin X, Zhang Z, Yi Y, Zhang J, Li Z. Extraction of eugenol from essential oils by in situ formation of deep eutectic solvents: a green recyclable process. J Anal Test. 2024;8:63–73.

Article  Google Scholar 

Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–82.

Article  CAS  PubMed  Google Scholar 

Mohd Fuad F, Mohd Nadzir M, Harun@Kamaruddin A. Hydrophilic natural deep eutectic solvent: a review on physicochemical properties and extractability of bioactive compounds. J Mol Liq. 2024; 339:116923

Bystrzanowska M, Tobiszewski M. Assessment and design of greener deep eutectic solvents—a multicriteria decision analysis. J Mol Liq. 2021;321: 114878.

Article  CAS  Google Scholar 

Van Osch DJGP, Dietz CHJT, Van Spronsen J, Kroon MC, Gallucci F, Van Sint AM, Tuinier R. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain Chem Eng. 2019;7:2933–42.

Article  Google Scholar 

Viñas-Ospino A, López-Malo D, Esteve MJ, Frígola A, Blesa J. Improving carotenoid extraction, stability, and antioxidant activity from Citrus sinensis peels using green solvents. Eur Food Res Technol. 2023;249:2349–61.

Article  Google Scholar 

Makoś P, Słupek E, Gębicki J. Hydrophobic deep eutectic solvents in microextraction techniques—a review. Microchem J. 2020;152: 104384.

Article  Google Scholar 

Bintanel-Cenis J, Fernández MA, Gómara B, Ramos L. Critical overview on the use of hydrophobic (deep) eutectic solvents for the extraction of organic pollutants in complex matrices. Talanta. 2023;270: 125599.

Article  PubMed  Google Scholar 

Abbas UL, Qiao Q, Nguyen MT, Shi J, Shao Q. Molecular dynamics simulations of heterogeneous hydrogen bond environment in hydrophobic deep eutectic solvents. AIChE J. 2022;68:1–15.

Article  Google Scholar 

Lindström A, Buerge IJ, Poiger T, Bergqvist PA, Müller MD, Buser HR. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol. 2002;36:2322–9.

Article  PubMed  Google Scholar 

Lu J, Jin M, Nguyen SH, Mao L, Li J, Coin LJM, Yuan Z, Guo J. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environ Int. 2018;118:257–65.

Article  CAS  PubMed  Google Scholar 

Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ. 2006;372:87–93.

Article  CAS  PubMed  Google Scholar 

Montagnini BG, Pernoncine KV, Borges LI, Costa NO, Moreira EG, Anselmo-Franci JA, Kiss ACI, Gerardin DCC. Investigation of the potential effects of triclosan as an endocrine disruptor in female rats: uterotrophic assay and two-generation study. Toxicology. 2018;410:152–65.

Article  CAS  PubMed  Google Scholar 

Torres C, Echeverría S. Report preliminary determination of triclosan by UV-Vis spectroscopy in wastewater from Guatemala city. CTS. 2017;4:79–86.

Google Scholar 

Cunha SC, Fernandes JO. Extraction techniques with deep eutectic solvents. TrAC Trends Anal Chem. 2018;105:225–39.

Article  CAS  Google Scholar 

Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116:1–9.

Article  CAS  PubMed  Google Scholar 

Toledo-Neira C, Álvarez-Lueje A. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection. Talanta. 2015;134:619–26.

Article  CAS  PubMed  Google Scholar 

Brereton RG. Experimental design. Applied Chemometrics for Scientists. Hoboken: Wiley; 2007. p. 9–62.

Book  Google Scholar 

Altunay N. Chemometric design-based optimization of a green, selective and inexpensive switchable hydrophilicity solvent-based liquid phase microextraction procedure for pre-concentration and extraction of sulfadiazine in milk, honey and water samples. Food Chem. 2022;394: 133540.

Article  CAS  PubMed  Google Scholar 

Mammana SB, Gagliardi LG, Silva MF. Sustainable sample preparation method based on hydrophobic natural deep eutectic solvents. Chemometric tools and green metrics for ibuprofen in groundwater. Sep Purif Technol. 2022; 303:122240.

López-Ruiz I, Lasarte-Aragonés G, Lucena R, Cárdenas S. Deep eutectic solvent coated paper: Sustainable sorptive phase for sample preparation. J Chromatogr A. 2023;1698: 464003.

Article  PubMed  Google Scholar 

Mesías-Salazar A, Rebolledo-Robles K, Salazar-González R, Bravo MA, Lucena R, Toledo-Neira C. Hydrophobic deep eutectic solvent as extractant phase for determining six carcinogenic polycyclic aromatic hydrocarbons in tea and coffee infusion samples. Microchem J. 2023;193: 109022.

Article  Google Scholar 

Adeyemi I, Sulaiman R, Almazroui M, Al-Hammadi A, AlNashef IM. Removal of chlorophenols from aqueous media with hydrophobic deep eutectic solvents: experimental study and COSMO RS evaluation. J Mol Liq. 2020;311: 113180.

Article  CAS  Google Scholar 

Otto M. Chemometrics: statistics and computer application in analytical chemistry. 3rd ed. Berlin: Wiley-VCH; 2016.

Book  Google Scholar 

USEPA Method 542: Determination of pharmaceuticals and personal care products in drinking water by solid phase extraction and liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). USEPA method. 2016;1–39.

Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical eco-scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem. 2012;37:61–72.

Article  Google Scholar 

Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M. Green analytical chemistry: the role of green extraction techniques. Compr Anal Chem. 2017;76:1–25.

CAS  Google Scholar 

Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 2013;766:61–8.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif