On-Site Analysis and Rapid Authentication of Valuable Agarwood Samples by Paper Capillary Spray Miniature Mass Spectrometry

Kalra R, Kaushik N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem Rev. 2017;16(5):1045–79.

Article  CAS  Google Scholar 

Chen Y, Yan TT, Zhang YG, Wang Q, Li GY. Characterization of the incense ingredients of cultivated grafting Kynam by TG-FTIR and HS-GC-MS. Fitoterapia. 2020;142(1):104493.

Article  PubMed  CAS  Google Scholar 

Wang YC, Hussain M, Jiang ZB, Wang ZH, Gao J, Ye FX, Mao RQ, Li H. Aquilaria Species (Thymelaeaceae) distribution, volatile and non-volatile phytochemicals, pharmacological uses, agarwood grading system, and induction methods. Molecules. 2021;26(24):7708.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pharmacopoeia of the People's Republic of China (2020). China Medical Science and Technology Press., Beijing.

Yu M, He QQ, Chen XQ, Feng J, Wie JH, Liu YY. Chemical and bioactivity diversity of 2-(2-Phenylethyl)chromones in agarwood: a review. Chem Biodivers. 2022;19(12):e202200490.

Article  PubMed  CAS  Google Scholar 

Li W, Chen HQ, Wang H, Mei WL, Dai HF. Natural products in agarwood and Aquilaria plants: chemistry, biological activities and biosynthesis. Nat Prod Rep. 2021;38(3):528–65.

Article  PubMed  CAS  Google Scholar 

Gao M, Han XM, Huang JQ, Sun Y, Liu YY, Chen HJ, Jin Y, Yang Y, Gao ZH, Xu YH, Zhang Z, He CN. Simultaneous determination of multiple active 2-(2-phenylethyl)chromone analogues in agarwood by HPLC, QAMS, and UPLC-MS. Phytochem Anal. 2021;32(3):412–22.

Article  PubMed  CAS  Google Scholar 

Yang JL, Dong WH, Kong FD, Liao G, Wang J, Li W, Mei WL, Dai HF. Characterization and analysis of 2-(2-Phenylethyl)-chromone derivatives from agarwood (Aquilaria crassna) by artificial holing for different times. Molecules. 2016;21(7):911.

Article  PubMed  PubMed Central  Google Scholar 

Liao G, Dong WH, Yang JL, Li W, Wang J, Mei WL, Dai HF. Monitoring the chemical profile in agarwood formation within one year and speculating on the biosynthesis of 2-(2-Phenylethyl)chromones. Molecules. 2018;23(6):1261.

Article  PubMed  PubMed Central  Google Scholar 

Takamatsu S, Ito M. Agarotetrol in agarwood: its use in evaluation of agarwood quality. J Nat Med. 2020;74(1):98–105.

Article  PubMed  CAS  Google Scholar 

Yue HL, He FY, Zhao ZJ, Duan YX. Plasma-based ambient mass spectrometry: recent progress and applications. Mass Spectrom Rev. 2021;42(1):95–130.

Article  PubMed  Google Scholar 

Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

Article  PubMed  Google Scholar 

Yang YG, Yang YB, Qiu H, Ju ZC, Shi YC, Wang ZT, Yang L. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal. 2021;193: 113722.

Article  PubMed  CAS  Google Scholar 

Das S, Bhatia R. Liquid extraction surface analysis-mass spectrometry: an advanced and environment-friendly analytical tool in modern analysis. J Sep Sci. 2022;45(14):2746–65.

Article  PubMed  CAS  Google Scholar 

Eikel D, Henion J. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(16):2345–54.

Article  PubMed  CAS  Google Scholar 

Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.

Article  PubMed  CAS  Google Scholar 

Chen YL, Li LN, Xiong F, Xie YQ, Xiong AZ, Wang ZT, Yang L. Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry. Food Chem. 2021;334: 127472.

Article  PubMed  CAS  Google Scholar 

McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmany DO, Demond PS, Rizzo G, Manicke NE, Glaros T. Paper spray ionization: applications and perspectives. TRAC-Trend Anal Chem. 2019;118:722–30.

Article  CAS  Google Scholar 

Lancaster C, Espinoza E. Evaluating agarwood products for 2-(2-phenylethyl)chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(23):2649–56.

Article  PubMed  CAS  Google Scholar 

Espinoza EO, Lancaster CA, Kreitals NM, Hata M, Cody RB, Blanchette RA. Distinguishing wild from cultivated agarwood (Aquilaria spp.) using direct analysis in real time and time of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(3):281–9.

Article  PubMed  CAS  Google Scholar 

Xie YQ, Li LN, Chen YL, Yang YG, Xu H, Wang ZT, Yang L. Rapid authentication of agarwood by using liquid extraction surface analysis mass spectrometry (LESA-MS). Phytochem Anal. 2020;31(6):801–8.

Article  PubMed  CAS  Google Scholar 

Ma XX, Ouyang Z. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. TRAC-Trend Anal Chem. 2016;85:10–9.

Article  CAS  Google Scholar 

Zhai YB, Feng Y, Wei YZ, Wang YZ, Xu W. Development of a miniature mass spectrometer with continuous atmospheric pressure interface. Analyst. 2015;140(10):3406–14.

Article  PubMed  CAS  Google Scholar 

Laxton JC, Monaghan J, Wallace B, Hore D, Wang N, Gill CG. Evaluation and improvement of a miniature mass spectrometry system for quantitative harm reduction drug checking. Int J Mass Spectrom. 2023;484:116976.

Article  CAS  Google Scholar 

Hu WM, Hou JL, Liu WJ, Gu X, Yang YL, Shang, HC, Zhang M. Online pharmaceutical process analysis of Chinese medicine using a miniature mass spectrometer: Extraction of active ingredients as an example. J Pharm Anal. 2023;13(5):535–43.

Google Scholar 

Ma Q, Bai H, Li WT, Wang C, Li XS, Cooks RG, Ouyang Z. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system. Anal Chim Acta. 2016;912:65–73.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo XY, Bai H, Lv YG, Xi GC, Li JF, Ma XX, Ren Y, Zheng OY, Ma Q. Rapid identification of regulated organic chemical compounds in toys using ambient ionization and a miniature mass spectrometry system. Talanta. 2018;180:182–92.

Article  PubMed  CAS  Google Scholar 

Plotka-Wasylka J. A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta. 2018;181:204–9.

Article  PubMed  CAS  Google Scholar 

Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-analytical Greenness metric approach and software. Anal Chem. 2020;92(14):10076–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ren Y, Chiang S, Zhang WP, Wang X, Lin ZQ, Ouyang Z. Paper-capillary spray for direct mass spectrometry analysis of biofluid samples. Anal Bioanal Chem. 2016;408(5):1385–90.

Article  PubMed  CAS  Google Scholar 

Meng XS, Zhai YB, Yuan WF, Lv YG, Lv Q, Bai H, Niu ZY, Xu W, Ma Q. Ambient ionization coupled with a miniature mass spectrometer for rapid identification of unauthorized adulterants in food. J Food Compos Anal. 2020;85:103333.

Article  CAS  Google Scholar 

Du Z, Wang H, Li X, Dong M, Chi B, Tian Z, Wang Z, Jiang H. Rapid screening and characterization of 2-(2-phenylethyl)chromones in agarwood by UHPLC-Q-exactive orbitrap-MS. Food Chem. 2023;424:136400.

Article  PubMed  CAS  Google Scholar 

Ibrahim SR, Mohamed GA. Natural occurr

留言 (0)

沒有登入
gif