Kalra R, Kaushik N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem Rev. 2017;16(5):1045–79.
Chen Y, Yan TT, Zhang YG, Wang Q, Li GY. Characterization of the incense ingredients of cultivated grafting Kynam by TG-FTIR and HS-GC-MS. Fitoterapia. 2020;142(1):104493.
Article PubMed CAS Google Scholar
Wang YC, Hussain M, Jiang ZB, Wang ZH, Gao J, Ye FX, Mao RQ, Li H. Aquilaria Species (Thymelaeaceae) distribution, volatile and non-volatile phytochemicals, pharmacological uses, agarwood grading system, and induction methods. Molecules. 2021;26(24):7708.
Article PubMed PubMed Central CAS Google Scholar
Pharmacopoeia of the People's Republic of China (2020). China Medical Science and Technology Press., Beijing.
Yu M, He QQ, Chen XQ, Feng J, Wie JH, Liu YY. Chemical and bioactivity diversity of 2-(2-Phenylethyl)chromones in agarwood: a review. Chem Biodivers. 2022;19(12):e202200490.
Article PubMed CAS Google Scholar
Li W, Chen HQ, Wang H, Mei WL, Dai HF. Natural products in agarwood and Aquilaria plants: chemistry, biological activities and biosynthesis. Nat Prod Rep. 2021;38(3):528–65.
Article PubMed CAS Google Scholar
Gao M, Han XM, Huang JQ, Sun Y, Liu YY, Chen HJ, Jin Y, Yang Y, Gao ZH, Xu YH, Zhang Z, He CN. Simultaneous determination of multiple active 2-(2-phenylethyl)chromone analogues in agarwood by HPLC, QAMS, and UPLC-MS. Phytochem Anal. 2021;32(3):412–22.
Article PubMed CAS Google Scholar
Yang JL, Dong WH, Kong FD, Liao G, Wang J, Li W, Mei WL, Dai HF. Characterization and analysis of 2-(2-Phenylethyl)-chromone derivatives from agarwood (Aquilaria crassna) by artificial holing for different times. Molecules. 2016;21(7):911.
Article PubMed PubMed Central Google Scholar
Liao G, Dong WH, Yang JL, Li W, Wang J, Mei WL, Dai HF. Monitoring the chemical profile in agarwood formation within one year and speculating on the biosynthesis of 2-(2-Phenylethyl)chromones. Molecules. 2018;23(6):1261.
Article PubMed PubMed Central Google Scholar
Takamatsu S, Ito M. Agarotetrol in agarwood: its use in evaluation of agarwood quality. J Nat Med. 2020;74(1):98–105.
Article PubMed CAS Google Scholar
Yue HL, He FY, Zhao ZJ, Duan YX. Plasma-based ambient mass spectrometry: recent progress and applications. Mass Spectrom Rev. 2021;42(1):95–130.
Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.
Yang YG, Yang YB, Qiu H, Ju ZC, Shi YC, Wang ZT, Yang L. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal. 2021;193: 113722.
Article PubMed CAS Google Scholar
Das S, Bhatia R. Liquid extraction surface analysis-mass spectrometry: an advanced and environment-friendly analytical tool in modern analysis. J Sep Sci. 2022;45(14):2746–65.
Article PubMed CAS Google Scholar
Eikel D, Henion J. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(16):2345–54.
Article PubMed CAS Google Scholar
Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.
Article PubMed CAS Google Scholar
Chen YL, Li LN, Xiong F, Xie YQ, Xiong AZ, Wang ZT, Yang L. Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry. Food Chem. 2021;334: 127472.
Article PubMed CAS Google Scholar
McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmany DO, Demond PS, Rizzo G, Manicke NE, Glaros T. Paper spray ionization: applications and perspectives. TRAC-Trend Anal Chem. 2019;118:722–30.
Lancaster C, Espinoza E. Evaluating agarwood products for 2-(2-phenylethyl)chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(23):2649–56.
Article PubMed CAS Google Scholar
Espinoza EO, Lancaster CA, Kreitals NM, Hata M, Cody RB, Blanchette RA. Distinguishing wild from cultivated agarwood (Aquilaria spp.) using direct analysis in real time and time of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(3):281–9.
Article PubMed CAS Google Scholar
Xie YQ, Li LN, Chen YL, Yang YG, Xu H, Wang ZT, Yang L. Rapid authentication of agarwood by using liquid extraction surface analysis mass spectrometry (LESA-MS). Phytochem Anal. 2020;31(6):801–8.
Article PubMed CAS Google Scholar
Ma XX, Ouyang Z. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. TRAC-Trend Anal Chem. 2016;85:10–9.
Zhai YB, Feng Y, Wei YZ, Wang YZ, Xu W. Development of a miniature mass spectrometer with continuous atmospheric pressure interface. Analyst. 2015;140(10):3406–14.
Article PubMed CAS Google Scholar
Laxton JC, Monaghan J, Wallace B, Hore D, Wang N, Gill CG. Evaluation and improvement of a miniature mass spectrometry system for quantitative harm reduction drug checking. Int J Mass Spectrom. 2023;484:116976.
Hu WM, Hou JL, Liu WJ, Gu X, Yang YL, Shang, HC, Zhang M. Online pharmaceutical process analysis of Chinese medicine using a miniature mass spectrometer: Extraction of active ingredients as an example. J Pharm Anal. 2023;13(5):535–43.
Ma Q, Bai H, Li WT, Wang C, Li XS, Cooks RG, Ouyang Z. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system. Anal Chim Acta. 2016;912:65–73.
Article PubMed PubMed Central CAS Google Scholar
Guo XY, Bai H, Lv YG, Xi GC, Li JF, Ma XX, Ren Y, Zheng OY, Ma Q. Rapid identification of regulated organic chemical compounds in toys using ambient ionization and a miniature mass spectrometry system. Talanta. 2018;180:182–92.
Article PubMed CAS Google Scholar
Plotka-Wasylka J. A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta. 2018;181:204–9.
Article PubMed CAS Google Scholar
Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-analytical Greenness metric approach and software. Anal Chem. 2020;92(14):10076–82.
Article PubMed PubMed Central CAS Google Scholar
Ren Y, Chiang S, Zhang WP, Wang X, Lin ZQ, Ouyang Z. Paper-capillary spray for direct mass spectrometry analysis of biofluid samples. Anal Bioanal Chem. 2016;408(5):1385–90.
Article PubMed CAS Google Scholar
Meng XS, Zhai YB, Yuan WF, Lv YG, Lv Q, Bai H, Niu ZY, Xu W, Ma Q. Ambient ionization coupled with a miniature mass spectrometer for rapid identification of unauthorized adulterants in food. J Food Compos Anal. 2020;85:103333.
Du Z, Wang H, Li X, Dong M, Chi B, Tian Z, Wang Z, Jiang H. Rapid screening and characterization of 2-(2-phenylethyl)chromones in agarwood by UHPLC-Q-exactive orbitrap-MS. Food Chem. 2023;424:136400.
Article PubMed CAS Google Scholar
Ibrahim SR, Mohamed GA. Natural occurr
留言 (0)